The J integral




The J contour integral as yield criterion
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Properties of the J-integral
Closed contour around A

1) J is zero for any closed contour containing 70 crack tip.
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The J contour integral as yield criterion

The integral becomes,
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The J contour integral as yield criterion
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2) J is path-independent —
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We have J‘r:‘]‘r1+‘]‘r’§+‘]‘r3+‘”r4 and J|.=0

The crack faces are traction free : )
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dy =0 along these contours




The J contour integral as yield criterion

2) J is path-independent —
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I, followed in the counter-
clockwise direction.

Any arbitrary (counterclockwise) path around a crack gives the same value of J

=) Jis patfrindependent




The J contour integral as yield criterion
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I"is followed from 0=-rt0 0 =r

We have, ds=rdo
dy =rcos6do

J integral becomes,

J = _}T {w(r,@)cos&—Ti (r,0) %}rd@

When r — Oonly the singular terms remain
2
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For LEFM ,wecanobtain: J=G=—L (if mode | loading)
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HRR solution

HRR theory \

» Hutchinson [1968] and Rice and Rosengren [1968] independently evaluated the
character of crack tip stress field in the case of power-law hardening materials.

» J characterizes the crack-tip field in a non-linear elastic material.

Assumptions:

O Stress & strain fields near the tip of a stationary crack within plastic zone.

O Consider 2D plane strain / plane stress & Mode | loading.

O Material is characterized by small strain J, deformation theory of
plasticity.
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HRR solution

HRR theory TN

= For uniaxial deformation:

n
£_°, o{ij Ramberg-Osgood equation
€0 Op Go

o, =Yyield strength
g, =0,/E
a : dimensionless constant

_ _ material properties
n : strain-hardening exponent

Power law relationship assumed between plastic strain and stress.

For a linear elastic material 7= 1.




HRR solution
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Ramberg—Osgood model
n
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= Elastic model:
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Stress-strain relation according to
the Ramberg-Osgood material law



HRR solution
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Hutchinson, Rice and Rosengren(HRR) solution

= Near crack tip “plastic” strains dominate:
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HRR solution
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= Asymptotic field derived by Hutchinson Rice and Rosengren:

n/(n+1) N+
Jj J jj/( Y U = A3Jn/(n+1) r]7/(n+1)

8ij = A2 (? Gij = Al(?
A; are regular functions that depend on #and the previous parameters.

The l/\/F singularity is recovered when n= 1.

Path independence of / ) The product Oij &jj varies as 1/r:

From J=r T {w(r,@)cosH—Ti (r,0) %}:9)} déo
(%)

.
Jdefines the amplitude of the HRR field as K'does in the linear case.
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GijSij—) as r—0
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HRR solution
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» Hutchinson, Rice & Rosengren proposed following form for plastic crack tip fields:

£J 1/(n+1) oo EJ n/(n+1)
% O(aaozlnrj ”( ) . E (aaozlnrj J( )

(see: Appendix 3A.4)

where /, Is an integration constant that depends on 7, and G and &; are dimensionless
functions of nand 6. § e :

» Jdefines the amplitude of the HRR field as K 5 k
does in the linear case. ssf &

=
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» The equations are called the HRR singularity, 3: \

named after Hutchinson, Rice, and Rosengren.
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Effect of the strain hardening exponent on the

HRR integration constant
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HRR solution

nl/2 1t 0 n|/2 n
0 0
Angular variation of dimensionless stress for n = 3 and 13 (a) plane stress and (b) plane strain.



'@' HRR solution
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Two singular zones can be identified:

l EJ 1/(n+1)
O.. =0, & n y 0
ij 0 ao_ozlnr] IJ( )
Log o,
K -dominated zone
f-:"\] ~dominated aone
"'% | — large strain region
~
! >
Small region where crack blunting occurs. Log rlL

Stress is still singular but with
a weaker power of singularity!

L} Large deformation

HRR based upon small displacements non applicable.




Relationship between J and CTOD
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» Relationship between Jand CTOD

Consider again the strip-yield problem, ——

......................

Hio

The first term in the J integral vanishes because dy=0 (slender zone)
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Relationship between J and CTOD
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General unique relationship between Jand CTOD:

m . dimensionless parameter depending on the stress state and materials properties
* The strip-yield model predicts that /77=1 (non-hardening material, plane stress condition)

* This relation is more generally derived for Aardening materials (77>1) using the HRR
displacements near the crack tip, I.e.

U = A3Jn/(n+1) r]/(n+1) ﬂ

Shih proposed this definition for §, : blunted crack 90§ 8,

"

= /mbecomes a (complicated) function of n

=» The proposed definition of 5, agrees with the one of the Irwin model

Moreover, G =%GY O m:% in this case
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Applications the J-integral
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Applications the J-integral
o

o
J-integral evaluated explicitly y
along specific contours 4
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Loads and geometry
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for a plane stress, linear elastic problem



Applications the J-integral

From stress-strain relation,
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Applications the J-integral
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Along BCorC'B’ BC: n,=0,n,=-1 and ds=dx # 0
=G ou, dx-o u, “ Y dx C’B’:n,=0,n,=1 and ds=-dx #0
Y ox Y ox

Along OAand A'O Jis zerosincedy =0and T,=0

Finally,




