Introduction to Contact Mechanics

Contact problems: roller bearing and impact of a lorry.

Introduction to Contact Mechanics

Sheet metal forming

Crash of a car against a deformable barrier

Introduction to Contact Mechanics

Self-contact of a car component Crash of a car against a deformable during crash, barrier

Introduction to Contact Mechanics

Contact of tyres with a road surface,

Introduction to Contact Mechanics

Contact in a Mass Spring System

Point mass supported by spring

Energy of the mass spring system

Contact in a Mass Spring System
The Energy of system

$$
\Pi(u)=\frac{1}{2} k u^{2}-m g u
$$

The variation of Energy

$$
\delta \Pi(u)=k u \delta u-m g \delta u=0
$$

The second variation of Π

$$
\delta^{2} \Pi=k
$$

The minimum of u

$$
u=\frac{m g}{k}
$$

The restriction of the motion of the mass by a rigid support

$$
c(u)=h-u \geq 0
$$

Contact in a Mass Spring System
the point mass contacts the rigid surface, a reaction force R_{N} appears.

$$
R_{N} \leq 0
$$

two cases within a contact problem

$$
\begin{array}{ll}
c(u)>0 & \text { and } R_{N}=0 \\
c(u)=0 & \text { and } R_{N}<0
\end{array}
$$

Both cases can be combined

$$
c(u) \geq 0, \quad R_{N} \leq 0 \quad \text { and } R_{N} c(u)=0
$$

Kuhn-Tucker condition

$$
c(u)=h-u \geq 0
$$

Contact in a Mass Spring System

Lagrange multiplier method
the Lagrange multiplier method adds to the energy o the system a term which contains the constraint

$$
\Pi(u, \lambda)=\frac{1}{2} k u^{2}-m g u+\lambda c(u)
$$

the Lagrange multiplier λ is equivalent to the reaction force R_{N}.

$$
\begin{aligned}
k u \delta u-m g \delta u-\lambda \delta u & =0 \\
c(u) \delta \lambda & =0
\end{aligned}
$$

for contact: $u=h$

$$
\lambda=k h-m g=R_{N}
$$

for does not contact: $R_{N}=0$

$$
u=m g / k
$$

Contact in a Mass Spring System

Penalty method

or an active constraint one adds a penalty term to the energy
$\Pi(u)=\frac{1}{2} k u^{2}-m g u+\frac{1}{2} \epsilon[c(u)]^{2} \quad$ with $\epsilon>0$
The variation of the energy

$$
k u \delta u-m g \delta u-\epsilon c(u) \delta u=0
$$

the solution

$$
\begin{aligned}
& u=(m g+\epsilon h) /(k+\epsilon) \quad \text { penalty spring due to the penalty term } \\
& c(u)=h-u=\frac{k h-m g}{k+\epsilon}
\end{aligned}
$$

Contact in a Mass Spring System

Penalty method $\quad c(u)=h-u=\frac{k h-m g}{k+\epsilon}$
in the contact,

$$
m g \geq k h
$$

Penetration of the point mass into the rigid support occurs.

The reaction force

$$
R_{N}=\lambda=\epsilon c(u)=\frac{\epsilon}{k+\epsilon}(k h-m g)
$$

$\epsilon \rightarrow \infty \quad$ the correct solution obtained with the Lagrange multiplier method.

$$
\lambda=k h-m g=R_{N}
$$

Finite Element Analysis of the Contact of Two Bars

Lagrange method

$$
\begin{aligned}
& \mid \\
& I=\frac{1}{2} \int_{(l)} E A\left[u^{\prime}(x)\right]^{2} d x-\sum_{i} F_{i} u\left(x_{i}\right) \\
& u_{l}-u_{r} \leq g \\
& 0 \leq x \leq l \\
& l<x \leq 2 l \\
& 2 l<x \leq 3 l: u(x)=\left(3-\frac{x}{l}\right) u_{3}
\end{aligned}
$$

Finite Element Analysis of the Contact of Two Bars

Lagrange method $\quad \Pi=\frac{1}{2} \int_{(l)} E A\left[u^{\prime}(x)\right]^{2} d x-\sum_{i} F_{i} u\left(x_{i}\right)$

$$
\begin{aligned}
& \Pi=\frac{1}{2} \frac{E A}{l}\left[u_{1}^{2}+\left(u_{2}-u_{1}\right)^{2}+u_{3}^{2}\right]-F u_{1} \\
& \delta \Pi=\frac{E A}{l}\left[u_{1} \delta u_{1}+\left(u_{2}-u_{1}\right)\left(\delta u_{2}-\delta u_{1}\right)+u_{3} \delta u_{3}\right]-F \delta u_{1}=0 \\
& u_{2}-u_{3} \leq g
\end{aligned}
$$

For $u_{2}-u_{3}<g$
$\left\langle\delta u_{1}, \delta u_{2}, \delta u_{3}\right\rangle\left\{\begin{array}{c}\frac{E A}{l}\left(2 u_{1}-u_{2}\right)-F \\ \frac{E A}{l}\left(u_{2}-u_{1}\right) \\ \frac{E A}{l} u_{3}\end{array}\right\}=0$

Finite Element Analysis of the Contact of Two Bars

Lagrange method

$$
\frac{E A}{l}\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{l}
F \\
0 \\
0
\end{array}\right\}
$$

$$
u_{1}=u_{2}=\frac{F l}{E A}, \quad u_{3}=0
$$

Finite Element Analysis of the Contact of Two Bars

Lagrange method

$$
\begin{aligned}
& F>E A \frac{g}{l} \quad u_{2}-u_{3}=g \\
& \Pi_{L M}=\Pi+\lambda g=\Pi+\lambda\left(g+u_{3}-u_{2}\right) \\
& \delta \Pi_{L M}=\delta \Pi+\lambda\left(\delta u_{3}-\delta u_{2}\right)+\delta \lambda\left(g+u_{3}-u_{2}\right)=0 \\
& \left\langle\delta u_{1}, \delta u_{2}, \delta u_{3}, \delta \lambda\right\rangle\left\{\begin{array}{c}
\frac{E A}{l}\left(2 u_{1}-u_{2}\right)-F \\
\frac{E A}{l}\left(u_{2}-u_{1}\right)-\lambda \\
\frac{E A}{l} u_{3}+\lambda \\
g+u_{3}-u_{2}
\end{array}\right\}=0
\end{aligned}
$$

Finite Element Analysis of the Contact of Two Bars

Lagrange method

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
2 \frac{E A}{l} & -\frac{E A}{l} & 0 & 0 \\
-\frac{E A}{l} & \frac{E A}{l} & 0 & -1 \\
0 & 0 & \frac{E A}{l} & 1 \\
0 & -1 & 1 & 0
\end{array}\right]\left\{\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\lambda
\end{array}\right\}=\left\{\begin{array}{c}
F \\
0 \\
0 \\
-g
\end{array}\right\}} \\
& u_{2}=\frac{1}{3}\left(2 g+\frac{F l}{E A}\right) \quad \lambda=\frac{1}{3}\left(E A \frac{g}{l}-F\right) \\
& F=E A\left(3 \frac{u_{2}}{l}-2 \frac{g}{l}\right)
\end{aligned}
$$

Finite Element Analysis of the Contact of Two Bars

Penalty method

$$
\left[\begin{array}{ccc}
2 \frac{E A}{l} & -\frac{E A}{l} & 0 \\
-\frac{E A}{l} & \frac{E A}{l}+\varepsilon & -\varepsilon \\
0 & -\varepsilon & \frac{E A}{l}+\varepsilon
\end{array}\right]\left\{\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{c}
F \\
\varepsilon g \\
-\varepsilon g
\end{array}\right\}
$$

$u_{2}=\frac{\frac{E A}{l} F+\left(\frac{2 E A}{l} g+F\right) \varepsilon}{\left(\frac{E A}{l}\right)^{2}+\frac{3 E A}{l} \varepsilon}$

$$
\begin{aligned}
& \varepsilon \rightarrow \infty \\
& u_{2}=\frac{\frac{2 E A}{l} g+F}{\frac{3 E A}{l}}=\frac{1}{3}\left(\frac{F l}{E A}+2 g\right)
\end{aligned}
$$

