عنوان درس:

طراحی به کمک کامپیوتر پیشرفته (کاربرد روش های عددی در تحلیل فرآیندهای تولید)

۱- معرفی و توانایی های نرم افزار ABAQUS

۲- معرفی و استفاده از راهنمای نرم افزار ABAQUS

۳- روش های حل مسایل اجزای محدود ضمنی (Implicit) و صریح (Explicit)

۴- تعریف تماس، تئوری و کاربرد

۵- حل مثال های از فرآیندهای مکانیکی و شکل دهی

۶- توانایی های نرم افزار در تجدید شبکه، Restart، پس پردازش نرم افزار

٧- حل مثال های از فرآیندهای ترمومکانیکی، مکانیک آسیب، شکست

۸- زیر برنامه ها در نرم افزار

۹ - تدوین زیر برنامه در نرم افزار

Physical problem

Example: A bracket

Questions:

- 1. What is the bending moment at section AA?
- 2. What is the deflection at the pin?

Mathematical model 1: beam

Moment at section AA: M = WL = 27,500 N cm

Deflection at load:
$$\delta_{\text{at load W}} = \frac{1}{3} \frac{W(L + r_N)^3}{EI} + \frac{W(L + r_N)}{\frac{5}{6} AG}$$

= 0.053 cm

How reliable is this model? How effective is this model?

Mathematical model 2: plane stress

Equilibrium equations (see Example 4.2)

$$\frac{\partial \tau_{co}}{\partial x} + \frac{\partial \tau_{cr}}{\partial y} = 0$$

$$\frac{\partial \tau_{co}}{\partial x} + \frac{\partial \tau_{cr}}{\partial y} = 0$$
in domain of bracket

 $\tau_{uv} = 0$, $\tau_{uv} = 0$ on surfaces except at point B and at imposed zero displacements

Stress-strain relation (see Table 4.3):

$$\begin{bmatrix} \tau_{ii} \\ \tau_{ij} \\ \tau_{ij} \end{bmatrix} = \frac{\mathcal{E}}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & (1 - \nu)/2 \end{bmatrix} \begin{bmatrix} \epsilon_{ii} \\ \epsilon_{ij} \\ \gamma_{ij} \end{bmatrix}$$

 $E = Young's modulus, \nu = Poisson's ratio$

Strain-displacement relations (see Section 4.2):

$$\epsilon_{cc} = \frac{\partial u}{\partial x}; \qquad \epsilon_{cc} = \frac{\partial c}{\partial y}; \qquad \gamma_{cc} = \frac{\partial u}{\partial y} + \frac{\partial c}{\partial x}$$

Difficult to solve by hand!

..General scenario... **Physical Problem Mathematical** model (Governed by differential **Equations**) **Numerical model**

e.g., finite element model

Finite element analysis

PREPROCESSING

- 1. Create a geometric model
- 2. Develop the finite element model

Solid model

Finite element model

Finite element analysis

FEM analysis scheme

Step 1: Divide the problem domain into non overlapping regions ("elements") connected to each other through special points ("nodes")

Finite element model

Finite element analysis

FEM analysis scheme

Step 2: Describe the behavior of each element

Step 3: Describe the behavior of the entire body by putting together the behavior of each of the elements (this is a process known as "assembly")

POSTPROCESSING

Compute moment at section AA

Finite element analysis

Example: A bracket

Mathematical model 2: plane stress

FEM solution to mathematical model 2 (plane stress)

Moment at section AA M=27,500 N cm

Deflection at load $\delta_{\text{at load W}} = 0.064 \text{ cm}$

Conclusion: With respect to the questions we posed, the beam model is reliable if the required bending moment is to be predicted within 1% and the deflection is to be predicted within 20%. The beam model is also highly effective since it can be solved easily (by hand).

What if we asked: what is the maximum stress in the bracket? would the beam model be of any use?

Example: A bracket

Summary

- 1. The selection of the mathematical model depends on the response to be predicted.
- 2. The most effective mathematical model is the one that delivers the answers to the questions in reliable manner with least effort.
- 3. The numerical solution is only as accurate as the mathematical model.

Modeling a physical problem

Modeling a physical problem

Verification and validation

What is the finite element method (FEM)?

- A technique for obtaining approximate solutions to boundary value problems.
- Partition of the domain into a set of simple shapes (element)
- Approximate the solution using piecewise polynomials within the element

- How to discretize the domain?
- Using simple shapes (element)

- All elements are connected using "nodes".

- Solution at Element 1 is described using the values at Nodes 1, 2, 6, and 5 (Interpolation).
- · Finite element analysis solves for Nodal Solutions.

How to calculate nodal solutions?

- Construct a huge simultaneous system of equations and solve for nodal solutions.
- Different physical problems have different matrices and vectors.

$$\begin{bmatrix} K_{11} & K_{12} & \cdots & K_{1n} \\ K_{21} & K_{22} & \cdots & K_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ K_{n1} & K_{n2} & \cdots & K_{nn} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \\ \vdots \\ F_n \end{bmatrix}$$

EXAMPLE: FINITE ELEMENTS

- · Plastic Wheel Cover Model
- 30,595 Nodes, 22,811 Elements
- Matrix size is larger than $150,000 \times 150,000$.

Introduction to Nonlinear Finite Element Analysis Procedures

An Example: Bending of A Cantilever Beam

Linear Problem(Infinitesimal Deformation)

Nonlinear Problem(Large Deformation)

. Moment is a function of deformation

Linear Problem:

- Infinitesimal deformation:
$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
Undeformed coord.

- Linear stress-strain relation:
- Constant displacement BCs
- Constant applied forces

Solution Procedure

$$K.d=F or P(d)=F$$

- Stiffness matrix \mathbf{K} is constant

If the load is doubled, displacement is doubled, too

Nonlinear Problem:

- Everything except for linear problems!
- Geometric nonlinearity: nonlinear strain-displacement relation
- Material nonlinearity: nonlinear constitutive relation
- Kinematic nonlinearity: Non-constant displacement BCs, contact
- Force nonlinearity: follow-up loads

Solution Procedure

- How to find d for a given F?

Incremental Solution Procedure

Nonlinearities in Structural Problems

. More than one nonlinearity can exist at the same time

Abagus FEA is a suite of finite element analysis modules

- · SIMULIA Home Page: www.simulia.com
- Abaqus documentation—all usage details are covered in the user's manuals.

Abaqus/CAE

- Complete Abaqus Environment for modeling, managing, and monitoring Abaqus analyses, as well as visualizing results.
- Intuitive and consistent user interface throughout the system.
- Based on the concepts of parts and assemblies of part instances, which are common to many CAD systems.
- Parts can be created within

 Abaqus/CAE or imported from other

 systems as geometry (to be meshed in

 Abaqus/CAE) or as meshes.
- Built-in feature-based parametric modeling system for creating parts.

Abaqus/CAE main user interface

Analysis modules

 Abaqus/Standard and Abaqus/Explicit provide the user with two complementary analysis tools.

Abaqus/Standard's capabilities:

- General analyses
 - Static stress/displacement analysis:
 - Rate-independent response
 - Rate-dependent (viscoelastic/creep/viscoplastic) response

Articulation of an automotive boot seal

- Transient dynamic stress/displacement analysis
- Transient or steady-state heat transfer analysis
- Transient or steady-state mass diffusion analysis
- Steady-state transport analysis

· Multiphysics:

- Thermal-mechanical analysis
- Structural-acoustic analysis
- Thermal-electrical (Joule heating) analysis
- Linear piezoelectric analysis
- Fully or partially saturated pore fluid flow-deformation
- Fluid-structure interaction

Thermal stresses in an exhaust manifold

- Linear perturbation analyses
 - Static stress/displacement analysis:
 - Linear static stress/displacement analysis
 - Eigenvalue buckling load prediction
 - Dynamic stress/displacement analysis:
 - Determination of natural modes and frequencies
 - Transient response via modal superposition
 - Steady-state response resulting from harmonic loading
 - Includes alternative "subspace projection" method for efficient analysis of large models with frequency-dependent properties (like damping)
 - Response spectrum analysis
 - Dynamic response resulting from random loading

Harmonic excitation of a tire

Abaqus/Explicit's capabilities:

- High-speed dynamics
- Quasi-static analysis
- Multiphysics
 - Thermal-mechanical analysis
 - Fully coupled: Explicit algorithms for both the mechanical and thermal responses
 - Can include adiabatic heating effects
 - Structural-acoustic analysis
 - Coupled Eulerian-Lagrangian (CEL)
 - Fluid-structure interaction

Drop test of a cell phone

· Comparing Abaqus/Standard and Abaqus/Explicit

Abaqus/Standard

- A general-purpose finite element program.
 - Nonlinear problems require iterations.
- Can solve for true static equilibrium in structural simulations.
- Provides a large number of capabilities for analyzing many different types of problems.
 - Nonstructural applications.
 - Coupled or uncoupled response.

Abaqus/Explicit

- A general-purpose finite element program for explicit dynamics.
 - Solution procedure does not require iteration.
- Solves highly discontinuous highspeed dynamic problems efficiently.
- Coupled-field analyses include:
 - · Thermal-mechanical
 - Structural-acoustic
 - · CEL

· Interactive postprocessing

- Abaqus/Viewer is the postprocessing module of Abaqus/CAE.
 - Available with Abaqus/CAE or as a stand-alone product
 - Can be used to visualize
 Abaqus results whether or not the model was created in Abaqus/CAE
 - Provides efficient visualization of large models

Contour plot of an aluminum wheel hitting a curb in Abaqus/Viewer

