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To illustrate this point we shall consider two-dimensional elasticity problems using
linear and parabolic serendipity quadrilateral elements with one- and four-point
quadratures respectively.

Here at each integrating point three independent ‘strain relations’ are used and the
total number of independent relations equals 3 x (number of integration points). The
number of unknowns a is simply 2 x (number of nodes) less restrained degrees of
freedom.

In Fig. 9.14(a) and (b) we show a single element and an assembly of two elements
supported by a minimum number of specified displacements eliminating rigid body
motion. The simple calculation shows that only in the assembly of the quadratic
elements is elimination of singularities possible, all the other cases remaining strictly
singular.

In Fig. 9.14(c¢) a well-supported block of both kinds of elements is considered and
here for both element types non-singular matrices may arise although local, near
singularity may still lead to unsatisfactory results (see Chapter 10).

The reader may well consider the same assembly but supported again by the mini-
mum restraint of three degrees of freedom. The assembly of linear elements with a
single integrating point wil/ be singular while the quadratic ones will, in fact, usually
be well behaved.

For the reason just indicated, linear single-point integrated elements are used
infrequently in static solutions, though they do find wide use in ‘explicit’ dynamics
codes — but needing certain remedial additions (e.g., hourglass contr0121’22) — while
four-point quadrature is often used for quadratic serendipity elements.f

In Chapter 10 we shall return to the problem of convergence and will indicate
dangers arising from local element singularities.

However, it is of interest to mention that in Chapter 12 we shall in fact seek matrix
singularities for special purposes (e.g., incompressibility) using similar arguments.

9.12 Generation of finite element meshes by mapping.
Blending functions

It would have been observed that it is an easy matter to obtain a coarse subdivision of
the analysis domain with a small number of isoparametric elements. If second- or
third-degree elements are used, the fit of these to quite complex boundaries is reason-
able, as shown in Fig. 9.15(a) where four parabolic elements specify a sectorial region.
This number of elements would be too small for analysis purposes but a simple sub-
division into finer elements can be done automatically by, say, assigning new positions
of nodes of the central points of the curvilinear coordinates and thus deriving a larger
number of similar elements, as shown in Fig. 9.15(b). Indeed, automatic subdivision
could be carried out further to generate a field of triangular elements. The process
thus allows us, with a small amount of original input data, to derive a finite element
mesh of any refinement desirable. In reference 23 this type of mesh generation is
developed for two- and three-dimensional solids and surfaces and is reasonably

T Repeating the test for quadratic lagrangian elements indicates a singularity for 2 x 2 quadrature (see
Chapter 10 for dangers).
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Fig. 9.15 Automatic mesh generation by parabolic isoparametric elements. (a) Specified mesh points.
(b) Automatic subdivision into a small number of isoparametric elements. (c) Automatic subdivision into
linear triangles.

efficient. However, elements of predetermined size and/or gradation cannot be easily
generated.

The main drawback of the mapping and generation suggested is the fact that the
originally circular boundaries in Fig. 9.15(a) are approximated by simple parabolae
and a geometric error can be developed there. To overcome this difficulty another
form of mapping, originally developed for the representation of complex motor-car
body shapes, can be adopted for this purpose.”* In this mapping blending functions
interpolate the unknown u in such a way as to satisfy exactly its variations along the
edges of a square &, n domain. If the coordinates x and y are used in a parametric
expression of the type given in Eq. (9.1), then any complex shape can be mapped
by a single element. In reference 24 the region of Fig. 9.15 is in fact so mapped
and a mesh subdivision obtained directly without any geometric error on the
boundary.

The blending processes are of considerable importance and have been used to
construct some interesting element families® (which in fact include the standard
serendipity elements as a subclass). To explain the process we shall show how a
function with prescribed variations along the boundaries can be interpolated.

Consider a region —1 < &, < 1, shown in Fig. 9.16, on the edges of which an
arbitrary function ¢ is specified [i.e., ¢(—1,7),6(1,n),d(&, —1), (&, 1) are given].
The problem presented is that of interpolating a function ¢(§,n) so that a smooth
surface reproducing precisely the boundary values is obtained. Writing

No=13 Ne=3
1 Iy 2 o (9.45)
N(=——  Nm=——

for our usual one-dimensional linear interpolating functions, we note that

P, =N o —1) + N> ()& 1) (9.46)
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interpolates linearly between the specified functions in the n direction, as shown in
Fig. 9.16(b). Similarly,

Pep = N'(©o(n, —1) + N*(€)s(n, 1) (9.47)

interpolates linearly in the ¢ direction [Fig. 9.16(c)]. Constructing a third function
which is a standard linear, bilinear interpolation of the kind we have already encoun-
tered [Fig. 9.16(d)], i.e.,

PePyd = N* (N> (m)g(1,1) + N*(ON' (n)é(1,-1)
+ N (ON* (n)d(—1,1) + N (N (n)d(—1,-1) (9.48)
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we note by inspection that
¢ = Py + Pep — PcPop (9.49)

is a smooth surface interpolating exactly the boundary functions.

Extension to functions with higher order blending is almost evident, and immedi-
ately the method of mapping the quadrilateral region —1 < &, n < | to any arbitrary
shape is obvious.

Though the above mesh generation method derives from mapping and indeed has
been widely applied in two and three dimensions, we shall see in the chapter devoted
to adaptivity (Chapter 15) that the optimal solution or specification of mesh density or
size should guide the mesh generation. We shall discuss this problem in that chapter to
some extent, but the interested reader is directed to references 26, 27 or books that
have appeared on the subject.”**' The subject has now grown to such an extent
that discussion in any detail is beyond the scope of this book. In the programs
mentioned at the end of each volume of this book we shall refer to the GiD system
which is available to readers.*?

9.13 Infinite domains and infinite elements

9.13.1 Introduction

In many problems of engineering and physics infinite or semi-infinite domains exist. A
typical example from structural mechanics may, for instance, be that of three-
dimensional (or axisymmetric) excavation, illustrated in Fig. 9.17. Here the problem
is one of determining the deformations in a semi-infinite half-space due to the removal
of loads with the specification of zero displacements at infinity. Similar problems
abound in electromagnetics and fluid mechanics but the situation illustrated is typical.
The question arises as to how such problems can be dealt with by a method of approx-
imation in which elements of decreasing size are used in the modelling process. The
first intuitive answer is the one illustrated in Fig. 9.17(a) where the infinite boundary
condition is specified at a finite boundary placed at a large distance from the object.
This, however, begs the question of what is a ‘large distance’ and obviously substan-
tial errors may arise if this boundary is not placed far enough away. On the other
hand, pushing this out excessively far necessitates the introduction of a large
number of elements to model regions of relatively little interest to the analyst.

To overcome such ‘infinite’ difficulties many methods have been proposed. In some
a sequence of nesting grids is used and a recurrence relation derived.* In others a
boundary-type exact solution is used and coupled to the finite element domain.*¢
However, without doubt, the most effective and efficient treatment is the use of
‘infinite elements™’~* pioneered originally by Bettess.*' In this process the conven-
tional, finite elements are coupled to elements of the type shown in Fig. 9.17(b)
which model in a reasonable manner the material stretching to infinity.

The shape of such two-dimensional elements and their treatment is best accom-
plished by mapping®~*! these onto a bi-unit square (or a finite line in one dimension
or cube in three dimensions). However, it is essential that the sequence of trial
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