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Structural Vibration and Dynamics
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= Natural frequencies and modes
= Frequency response (F ()=F, sin wi)

= Transient response (£~ () arbitrary)

F(1)




/. Basic E. quations\

Single DOF System
y =) 'm - mass
4 k - stiffness
B |- damp
¢ - damping
/;ud:: e f () - force

- X, U

From Newton’s law of motion (/= ma), we have

mu=f(t)-ku—cu, mii+cu+ku=f(1)

where vis the displacement, u= au// dt and ii= d*u/l de.




Natural frequencies and modes
\

Free Vibration:  f({) = 0 and no damping (c = 0)

Eq. (1) becomes

mii+ku=0 (2)
(meaning: inertia force + stiffness force = 0)

Assume:

u(t) =Usin(wr)
where o 1s the frequency of oscillation, U/ the amplitude.

Eq. (2) yields

—Uw?msin(wt) + kUsin(wt) = 0
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1.e.,
2
l—a) m +kJU =0
For nontrivial solutions for U, we must have
l— > m+ kJ: 0,

which yields

= ()

m

This 1s the circular natural frequency of the single DOF
system (rad/s). The cyclic frequency (1/s = Hz) is

f= (4)




Natural frequencies and modes
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Undamped Free Vibration

&

With non-zero damping ¢, where
O<c<c, =2mw=2.km  (c.= critical damping) (5)

we have the damped natural frequency:
1-&, (6)

where & = < (damping ratio).
¢

C
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For structural damping: 0 <& <0.15 (usually 1~5%)

W, = . (7)

Thus, we can 1gnore damping in normal mode analysis.

.......
_______

Damped Free Vibration




Natural frequencies and modes
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Multiple DOF System
Equation of Motion

Equation of motion for the whole structure 1s

Mu + Cu+ Ku =f(7) | (8)

in which: u — nodal displacement vector,
M — mass matrix,
C — damping matrix,
K — stiffness matrix,
f — forcing vector.

Physical meaning of Eq. (8):
Inertia forces + Damping forces + Elastic forces

= Applied forces
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Mass Matrices:

Lumped mass matrix (1-D bar element):

pAL 1 pdL 2 . _PAL
T ST
U Uy

Element mass matrix 1s found to be

pz;lL 0
m= 0 PAL
2

. v

. Y .
diagonal matrix



Natural frequencies and modes
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In general, we have the consistent mass matrix given by

. T
m = | pN'NaV )

where N is the same shape function matrix as used for the
displacement field.

This 1s obtained by considering the kinetic energy:

K :lilel'l (ct. Lmvz)
2 2
:% pude _—J udV
R NT (s
—EﬁVp(Nu) (Na)dr
=% j PN’ Nay i

|



Natural frequencies and modes
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Bar Element (linear shape function):

mLPFﬂB—& ¢JaLa

=pAL|:1/3 1/6:|ii1 (10)

1/6 1/3

U,




\
Simple Beam Element.
vV, \%
‘“‘?\91 pA L ’\ng
)
)
_ T
m= [ pN'Nav
156 221 54 —13L
_pAL| 220 A* 130 =30
C420| 54 13L 156 =22L
—-13L -3 -22L 4L

Natural frequencies and modes
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Natural frequencies and modes
/1. Free Vibration\

Study of the dynamic characteristics of a structure:
e natural frequencies

e normal modes (shapes)
Let f(r) = 0 and C = 0 (ignore damping) in the dynamic
equation (8) and obtain

Mii + Ku = 0 (12)

Assume that displacements vary harmonically with time, that
1S,

u(z) =usin( ot),

u(z) = wucos( wt),

i(/) = - wsin( w¢),

where w is the vector of nodal displacement amplitudes.
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Eq. (12) yields,

K -w’M fg=0 (13)

This 1s a generalized eigenvalue problem (EVP).

Trivial solution: @ = 0 for any values of ® (not interesting).

Nontrivial solutions: W # 0 only if

K- 'M|=0 (14)

This is an n-th order polynomial of @, from which we can
find n solutions (roots) or eigenvalues ;.
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Natural frequencies and modes
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e w;(i=1,2, ..., n) are the natural frequencies (or
characteristic frequencies) of the structure.

e ) (the smallest one) is called the fundamental frequency.

e For each w;, Eq. (13) gives one solution (or eigen) vector
lK _a)szJii =0,

U . (i=1,2,...,n) are the normal modes (or natural
modes, mode shapes, etc.).
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Natural frequencies and modes
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Properties of Normal Modes
u, Ku, =0

9

— T — C
u Mu, =0, for i #j, (15)

if @ # @,. That 1s, modes are orthogonal (or independent) to
cach other with respect to K and M matrices.

Normalize the modes:
o MT, =1,

KU =w’. (16)
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Natural frequencies and modes
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Note:

e Magnitudes of displacements (modes) or stresses in normal
mode analysis have no physical meaning.

e For normal mode analysis, no support of the structure 1s
necessary.

®; =0 < there are rigid body motions of the whole or a
part of the structure.

= apply this to check the FEA model (check for
mechanism or free elements in the models).

e Lower modes are more accurate than higher modes 1n the
FE calculations (less spatial variations in the lower modes
= fewer elements/wave length are needed).
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Example: v
va
, A, El <NO:
: N
1 2" X
- L -
v 0
K-awm) 2l=1"1
6, 0
EIl 12 -6L L| 156 =22L
I(:—3 5 b M:& |
L'|-6L 4L 420 =221 4L
EVP:

12-1564 —6L+221 o
L4222 AR —AIPA|

in which A = @’ pAL* /420 EI .
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Solving the EVP, we obtain,
. hoo (v, |
Fgm Beam Free a)l _ 3533( EI ) j {\iz | — { 1 1

4 138/ (>

Modes /#2 pAL 92. 1 AI

i3 ! _ -
Ny ELY: [V ! l
4] ®, = 3481 70 e[ T1762/

p 2)2 LJ

Exact solutions:

T VA -1V
w =351 E]4 Cow =203 2L |
PAL pAL’

We can see that mode 1 1s calculated much more accurately
than mode 2, with one beam element.
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Frequency Response Analysis
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/11. Frequency Response Analysis

Mu+Ca+Ku= Fsinax
— (25)

Harmonicloading

Modal method: Apply the modal equations,

Z; + 2650)1'25 + a)izzi = p, sin wr, i=1,2,....m. (20)
These are 1-D equations. Solutions are

pi/a)iz

Z;(r)= sin(wt —6,), (27)

JaA-nH? +2En,)?
where
2EM.
0. = arctan g—’n; phase angle
) n, = a;/a)i’
C. C.

. ¢ c , ,
R . =—"L= 5 , damping ratio




Frequency Response Analysis
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Direct Method: Solve Eq. (25) directly, that 1s, calculate
it

the inverse. Withu = We " (complex notation), Eq. (25)
becomes

K +ioC-0’M Jg=T.

This equation 1s expensive to solve and matrix 1s 1ll-
conditioned 1f ® is close to any .




[ransient Response Analysis
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1V. Transient Response Analysis

e Structure response to arbitrary, time-dependent loading.

A fO

|
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Compute responses by integrating through time:

A

U,

U, U4

|
tO II IL2 trr tn+1 t

Equation of motion at instance 7, n=0, 1, 2, 3, --:

Mii, +Ca, +Ku =f

Time increment: Ar=t,,;-t,, n=0,1, 2, 3, ---.

There are two categories of methods for transient analysis.



[ransient Response Analysis
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A. Direct Methods (Direct Integration Methods)

o Central Difference Method

Approximate using finite difference:

. 1
u = u + — u n - ?
n 2 A f ( n+1 1 )

1
il‘n — uII+ - 2un + uﬂ,— )
(At)z( : :

Dynamic equation becomes,

1 1
M a2 (urH—l - 2un + un—l) + C[ (un+1 - unl)] + Ku’n = fn ’
(A1)’ QA1

which yields,

Aun+1 — F(t)
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[ransient Response Analysis

N
Aun—i—l :F(t)
1 1
A = M +—C,
(Ar) 2At

< 2 1 1

F(r)=f —| K - M _ M-—C .
h ( ) n |: (AZL)Z }un |:(Af)2 2At }un—l

u,.; 1s calculated from u, & u,.;, and solution 1s
marching from 7,7 ---¢,1,,, -, until convergent.

This method 1s unstable it At 1s too large.
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e Newmark Method.:

Use approxiumations:

(Ar)
2

[(1-28)i, +2pBi , | — i, =)

l:ln+1 ~ I:ln T At[(l o y)i'in T yi'in+l]’
where 3 & y are chosen constants. These lead to

u  =u +Am +

n+1

Au = F (1)

n+1

where

A=K+yC+ IZM,
PA: B (A1)

F(t) = f(fu+1’y’ﬁ’At’C’M ’uii’l:liz’i'in)'
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This method is unconditionally stable it

which gives the constant average acceleration method.

Direct methods can be expensive! (the need to
compute A, often repeatedly for each time step).




[ ransient Response Analysis
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B. Modal Method

First, do the transformation of the dynamic equations using
the modal matrix before the time marching:

i

u = Z u.z.(r)=oz,
i=1 1= 1,2, m.
L+ 26w, +w;z, = p,(1),

Then, solve the uncoupled equations using an integration
method. Can use, e.g., 10%, of the total modes (m= n/10).

e Uncoupled system,
e Fewer equations,
e No inverse of matrices,

e More efficient for large problems.
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Comparisons of the Methods

Direct Methods Modal Method

e Small model e [arge model

e More accurate (with small At) |e Higher modes ignored

e Single loading e Multiple loading
e Shock loading e Periodic loading
® ®
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Cautions in Dynamic Analysis

o Symmetry: It should not be used in the dynamic analysis
(normal modes, etc.) because symmetric structures can
have antisymmetric modes.

e Mechanism, rigid body motion means @= 0. Can use
this to check FEA models to see it they are properly
connected and/or supported.

e Input for FEA: loading F(t) or F(®) can be very
complicated in real applications and often needs to be
filtered first before used as input for FEA.

Examples

Impact, drop test, etc.
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