Finite Element Analysis of Boundary Value Problem

FE Analysis of 1D Bars

The DE is in the form of

$$
-\frac{d}{d x}\left(E A \frac{d u}{d x}\right)-q=0
$$

q is the distributed load and
Q_{0} is the axial force.

$$
u(0)=u_{0}, \quad\left(E A \frac{d u}{d x}\right)_{x=L}=Q_{0}
$$

FE Model

FE Analysis of 1D Bars

Weak form

In FE analysis, we seek an approximation solution over each element.

$$
\begin{aligned}
& \int_{x_{A}}^{x_{B}}\left(E A \frac{d w}{d x} \frac{d u}{d x}-w q\right) d x-w\left(x_{A}\right) Q_{A}-w\left(x_{B}\right) Q_{B}=0 \\
& B(w, u)=\int_{x_{A}}^{x_{B}}\left(E A \frac{d w}{d x} \frac{d u}{d x}\right) d x \\
& l(w)=\int_{x_{A}}^{x_{B}} w q d x+w\left(x_{A}\right) Q_{A}+w\left(x_{B}\right) Q_{B}
\end{aligned}
$$

FE Analysis of 1D Bars

Approximation of the solution

1- The approximation solution should be continuous and differentiable as required by the weak form. (nonzero coefficient matrix)
2- It should be a complete polynomial (capture all possible States, e.g. constant, linear,)
3- It should be an interpolant of variables at the nodes (satisfy EBCs)

First order

$$
\left\{\begin{array}{l}
U=a+b x, \quad U\left(x_{1}\right)=u_{1}, U\left(x_{2}\right)=u_{2} \\
U=N_{1} u_{1}+N_{2} u_{2} \\
N_{1}=1-\bar{x} / \ell, \quad N_{2}=\bar{x} / \ell
\end{array}\right.
$$

$$
\underset{\text { Second Order }}{2} 3\left\{\begin{array}{l}
U=a+b x+c x^{2}, \quad U\left(x_{1}\right)=u_{1}, U\left(x_{2}\right)=u_{2}, U\left(x_{3}\right)=u_{3} \\
U=N_{l} u_{l}+N_{2} u_{2}+N_{3} u_{3} \\
N_{l}=(l-\bar{x} / \ell)(l-2 \bar{x} / \ell), \quad N_{2}=4 \bar{x} / \ell(1-\bar{x} / \ell), \quad N_{3}=-\bar{x} / \ell(1-2 \bar{x} / \ell)
\end{array}\right.
$$

FE Analysis of 1D Bars

FE Model

$$
u \approx U=\sum_{j=1}^{n} u_{j} N_{j} \quad \text { and } \quad \int_{x_{A}}^{x_{B}}\left(E A \frac{d w}{d x} \frac{d u}{d x}-w q\right) d x-w\left(x_{A}\right) Q_{A}-w\left(x_{B}\right) Q_{B}=0
$$

$$
w=N_{j}
$$

If $n>2$ then the above integral should modify to include interior nodal forces

$$
\begin{aligned}
& \int_{x_{1}}^{x_{x}}\left(E A \frac{d N_{1}}{d x} \sum_{j=1}^{n} u_{j} \frac{d N_{j}}{d x}-N_{1} q\right) d x-\sum_{j=1}^{n} N_{1}\left(x_{j}\right) Q_{j}=0 \\
& \int_{x_{1}}^{x_{n}}\left(E A \frac{d N_{2}}{d x} \sum_{j=1}^{n} u_{j} \frac{d N_{j}}{d x}-N_{2} q\right) d x-\sum_{j=1}^{n} N_{2}\left(x_{j}\right) Q_{j}=0 \\
& \text { 蹅 } \\
& \int_{x_{A}}^{x_{n}}\left(E A \frac{d N_{n}}{d x} \sum_{j=1}^{n} u_{j} \frac{d N_{j}}{d x}-N_{n} q\right) d x-\sum_{j=1}^{n} N_{n}\left(x_{j}\right) Q_{j}=0 \\
& \text { Stiffness matrix Force vector } \\
& \text { Primary nodal } \\
& \text { Secondary nodal } \\
& \text { DOF }
\end{aligned}
$$

FE Analysis of 1D Bars

FE Model

where $\quad K_{i j}=\int_{x_{A}}^{x_{B}}\left(E A \frac{d N_{i}}{d x} \frac{d N_{j}}{d x}\right) d x=B\left(N_{i}, N_{j}\right)$

$$
f_{i}=\int_{x_{A}}^{x_{R}} q N_{i} d x=l\left(N_{i}\right)
$$

Note $\longrightarrow \sum_{j=1}^{n} N_{j}\left(x_{i}\right) Q_{j}=Q_{i}$
Note that the problem has $2 n$ unknowns for each element, i.e. u_{i} and Q_{i}, so it cannot be solved without having another n conditions. Some of these will be provided by BCs and the remainder by balance of the secondary variables (forces) at node common to several element. (assembling process)

FE Analysis of 1D Bars

FE Model (Linear Element)

$$
\begin{aligned}
& U=N_{1} u_{1}+N_{2} u_{2} \\
& N_{1}=1-\bar{x} / \ell, \quad N_{2}=\bar{x} / \ell \\
& K_{11}= \int_{0}^{\ell}(E A)(-1 / \ell)(-1 / \ell) d x=A E / \ell \quad f_{1}=\int_{0}^{\ell} q(1-x / \ell) d x=1 / 2 q \ell \\
& K_{12}= \int_{0}^{\ell}(E A)(-1 / \ell)(1 / \ell) d x=-A E / \ell \quad f_{2}=\int_{0}^{\ell} q(x / \ell) d x=1 / 2 q \ell \\
& K_{22}=\int_{0}^{\ell}(E A)(1 / \ell)(1 / \ell) d x=A E / \ell \\
& \\
& \begin{array}{c}
\text { Eventually for } \\
\text { Linear shape function }
\end{array} \quad\left[K^{e}\right]=\frac{A E}{\ell}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] ; \quad\{f\}=\frac{q \ell}{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}
\end{aligned}
$$

FE Analysis of 1D Bars

FE Model (Quadratic Element)

$$
\begin{aligned}
& U=N_{1} u_{1}+N_{2} u_{2}+N_{3} u_{3} \\
& N_{1}=(1-x / \ell)(1-2 x / \ell), \quad N_{2}=4 x / \ell(1-x / \ell), \quad N_{3}=-x / \ell(1-2 x / \ell) \\
& K_{11}=\int_{0}^{\ell}(E A)\left(-3 / \ell+4 x / \ell^{2}\right)\left(-3 / \ell+4 x / \ell^{2}\right) d x=7 A E / 3 \ell \\
& K_{12}=K_{21}=\int_{0}^{\ell}(E A)\left(-3 / \ell+4 x / \ell^{2}\right)(4 / \ell-8 x / \ell) d x=-8 A E / 3 \ell
\end{aligned}
$$

$$
f_{1}=\int_{0}^{\ell} q\left(1-3 x / \ell+2(x / \ell)^{2}\right) d x=1 / 6 q \ell
$$

$$
f_{2}=\int_{0}^{\ell} q(4 x / \ell)(1-x / \ell) d x=4 / 6 q \ell
$$

FE Analysis of 1D Bars

FE Model (Quadratic Element)

For quadratic Shape function

$$
\left[K^{e}\right]=\frac{A E}{3 \ell}\left[\begin{array}{ccc}
7 & -8 & 1 \\
-8 & 16 & -8 \\
1 & -8 & 7
\end{array}\right] ; \quad\{f\}=\frac{q \ell}{6}\left\{\begin{array}{l}
1 \\
4 \\
1
\end{array}\right\}
$$

FE Analysis of 1D Bars

Assembly (or connectivity) of elements

In driving the element equation
-Isolate the element from mesh
-Formulate weak form (variational form)
-Developed its finite element model
To solve the total problem
-put the element in its original position
-Impose continuity of PVs at nodal points

$$
u_{n}^{e}=u_{1}^{e+1}
$$

-Balance of SVs at connecting nodes

$$
Q_{n}^{e}+Q_{1}^{e+1}= \begin{cases}0 & \text { if no external point source is applied } \\ Q_{0} & \text { if an external point source of } Q_{0} \text { is applied } .\end{cases}
$$

FE Analysis of 1D Bars

Assembly (or connectivity) of elements (For linear element $n=2$)

 The interelement continuity of the primary variables is imposed by renaming the two variable $u_{n}{ }^{e}$ and $u_{l}{ }^{e+1}$ at $x=X_{N}$ as one and same, namely the value of u at the global node N :$$
u_{n}^{e}=u_{1}^{e+1}=U_{N}
$$

where $\quad N=(n-1) e+1$
For a mesh of E linear finite elements ($n=2$):

$$
\begin{aligned}
& u_{1}^{1}=U_{1} \\
& u_{2}^{1}=u_{1}^{2}=U_{2} \\
& u_{2}^{2}=u_{1}^{3}=U_{3} \\
& \vdots \\
& u_{2}^{E-1}=u_{1}^{E}=U_{E} \\
& u_{2}^{E}=U_{E+1}
\end{aligned}
$$

FE Analysis of 1D Bars

Assembly (or connectivity) of elements (For linear element $n=2$) To enforce balance of secondary variables Q_{i}^{e}, eq. (*), we must add nth equation of the element Ω^{e} to the first equation of the element $\Omega^{\mathrm{e}+1}$:

$$
\sum_{j=1}^{n} K_{n j}^{e} u_{j}^{e}=f_{n}^{e}+Q_{n}^{e}
$$

and

$$
\sum_{j=1}^{n} K_{l j}^{e+1} u_{j}^{e+l}=f_{l}^{e+l}+Q_{l}^{e+l}
$$

to give

$$
\begin{aligned}
\sum_{j=1}^{n}\left(K_{n j}^{e} u_{j}^{e}+K_{l j}^{e+1} u_{j}^{e+1}\right) & =f_{n}^{e}+f_{l}^{e+1}+\left(Q_{n}^{e}+Q_{l}^{e+l}\right) \\
& =f_{n}^{e}+f_{l}^{e+1}+Q_{0}
\end{aligned}
$$

This process reduces the number of equations from $2 E$ to $E+1$.

FE Analysis of 1D Bars

Assembly (or connectivity) of elements (For linear element $n=2$)

 The first equation of the first element and the last equation of the last element will remain unchanged, except for renaming of the primary variables. The left-hand of the equation can be written in terms of the global nodal values as$$
\begin{aligned}
&\left(K_{n 1}^{e} u_{1}^{e}+K_{n 2}^{e} L_{2}^{e}+\cdots+K_{n n}^{e} u_{n}^{e}\right)+\left(K_{l 1}^{e+1} u_{l}^{e+l}+K_{l 2}^{e+1} u_{2}^{e+1}+\cdots+K_{l n}^{e+1} u_{n}^{e+1}\right) \\
&=\left(K_{n 1}^{e} U_{N}+K_{n 2}^{e} U_{N+1}+\cdots+K_{n n}^{e} U_{N+n-1}\right)+ \\
&\left(K_{l 1}^{e+1} U_{N+n-1}+K_{12}^{e+1} U_{N+n}+\cdots+K_{l n}^{e l} U_{N+2 n-2}\right) \\
&= K_{n 1}^{e} U_{N}+K_{n 2}^{e} U_{N+1}+\cdots+K_{n(n-1)}^{e} U_{N+n-2}+ \\
&\left(K_{n n}^{e}+K_{l 1}^{e+1}\right) U_{N+n-1}+K_{l 2}^{e l} U_{N+n}+\cdots+K_{l n}^{e+1} U_{N+2 n-2}
\end{aligned}
$$

where $\quad N=(n-1) e+1$

FE Analysis of 1D Bars

Assembly (or connectivity) of elements (For linear element $n=2$) For a mesh of E linear finite elements ($n=2$):

$$
\begin{aligned}
& K_{l l}^{l} U_{1}+K_{12}^{l} U_{2}=f_{l}^{I}+Q_{1}^{I} \quad \text { (unchanged) } \\
& K_{2 l}^{l} U_{1}+\left(K_{22}^{l}+K_{l l}^{2}\right) U_{2}+K_{l 2}^{2} U_{3}=f_{2}^{l}+f_{l}^{2}+Q_{2}^{l}+Q_{1}^{2} \\
& K_{2 l}^{2} U_{2}+\left(K_{22}^{2}+K_{I l}^{3}\right) U_{3}+K_{12}^{3} U_{4}=f_{2}^{2}+f_{l}^{3}+Q_{2}^{2}+Q_{1}^{3} \\
& K_{21}^{E-1} U_{E-1}+\left(K_{22}^{E-1}+K_{l l}^{E}\right) U_{E}+K_{l 2}^{E} U_{E+1}=f_{2}^{E-1}+f_{l}^{E}+Q_{2}^{E-1}+Q_{1}^{E} \\
& K_{21}^{E} U_{E}+K_{22}^{E} U_{E+1}=f_{2}^{E}+Q_{2}^{E} \quad \text { (unchanged) }
\end{aligned}
$$

FE Analysis of 1D Bars

Assembly (or connectivity) of elements (For linear element $n=2$) In matrix form

$$
\begin{aligned}
& =\left\{\begin{array}{l}
f_{1}^{I} \\
f_{2}^{I}+f_{1}^{2} \\
f_{2}^{2}+f_{1}^{3} \\
\cdots \\
f_{2}^{E-I}+f_{1}^{E} \\
f_{2}^{E}
\end{array}\right\}+\left\{\begin{array}{l}
Q_{1}^{I} \\
Q_{2}^{I}+Q_{1}^{2} \\
Q_{2}^{2}+Q_{1}^{3} \\
\cdots \\
Q_{2}^{E-I}+Q_{1}^{E} \\
Q_{2}^{E}
\end{array}\right\}
\end{aligned}
$$

FE Analysis of BEAM

The DE is in the form of

$$
\frac{d^{2}}{d x^{2}}\left(b \frac{d^{2} w}{d x^{2}}\right)=f(x) \quad 0<x<L
$$

FE Analysis of BEAM

Weak form

$$
\int_{x_{e}}^{x_{e+1}} v\left(\frac{d^{2}}{d x^{2}}\left(b \frac{d^{2} w}{d x^{2}}\right)-f\right) d x=0 \quad \begin{array}{ll}
Q_{1}^{e}=\left[\frac{d}{d x}\left(b \frac{d^{2} w}{d x^{2}}\right)\right]_{x_{e}} ; Q_{2}^{e}=\left[b \frac{d^{2} w}{d x^{2}}\right]_{x_{e}} \\
& Q_{3}^{e}=-\left[\frac{d}{d x}\left(b \frac{d^{2} w}{d x^{2}}\right)\right]_{x_{e+1}} ; Q_{4}^{e}=-\left[b \frac{d^{2} w}{d x^{2}}\right]_{x_{e+1}}
\end{array}
$$

or

BCs

$\int_{x_{e}}^{x_{e+1}}\left(b \frac{d^{2} v}{d x^{2}} \frac{d^{2} w}{d x^{2}}-v f\right) d x-v\left(x_{e}\right) Q_{1}^{e}-\left(-\frac{d v}{d x}\right)_{x_{e}} Q_{2}^{e}-v\left(x_{e+1}\right) Q_{3}^{e}-\left(-\frac{d v}{d x}\right)_{x_{e+1}} Q_{4}^{e}=0$
where

$$
\begin{aligned}
& B(v, w)=\int_{x_{e}}^{x_{e+1}}\left(b \frac{d^{2} v}{d x^{2}} \frac{d^{2} w}{d x^{2}}\right) d x \\
& l(v)=\int_{x_{e}}^{x_{e+1}} v f d x+v\left(x_{e}\right) Q_{1}^{e}+\left(-\frac{d v}{d x}\right)_{x_{e}} Q_{2}^{e}+v\left(x_{e+1}\right) Q_{3}^{e}+\left(-\frac{d v}{d x}\right)_{x_{e+1}} Q_{4}^{e}
\end{aligned}
$$

FE Analysis of BEAM

Approximation of the solution

1- The approximation solution should be continuous and differentiable as required by the weak form. (nonzero coefficient matrix)
2- It should be a complete polynomial (capture all possible States, e.g. constant, linear,)
3- It should be an interpolant of variables at the nodes (satisfy EBCs)

First order

$$
\begin{aligned}
& w=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3} \\
& w\left(x_{e}\right)=w_{1}, w\left(x_{e+1}\right)=w_{2}, \theta\left(x_{e}\right)=\theta_{1}, \theta\left(x_{e+1}\right)=\theta_{2}
\end{aligned}
$$

$$
w=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}
$$

Or

$$
u_{1}^{e}=w\left(x_{e}\right), u_{2}^{e}=-\left.\frac{d w}{d x}\right|_{x_{e}} ; u_{3}^{e}=w\left(x_{e+1}\right), u_{4}^{e}=-\left.\frac{d w}{d x}\right|_{x_{e+1}}
$$

FE Analysis of BEAM

Shape Functions

Calculating Ci and substituting in the equation for w

$$
w^{e}(x)=\sum_{j=1}^{4} u_{j}^{e} N_{j}
$$

The interpolation functions in term of local coordinates are

$$
\begin{aligned}
& N_{1}=1-3\left(\frac{x}{h}\right)^{2}+2\left(\frac{x}{h}\right)^{3} ; N_{2}=-x\left(1-\frac{x}{h}\right)^{2} \\
& N_{3}=3\left(\frac{x}{h}\right)^{2}-2\left(\frac{x}{h}\right)^{3} ; N_{4}=-x\left[\left(\frac{x}{h}\right)^{2}-\frac{x}{h}\right]
\end{aligned}
$$

FE Analysis of BEAM

Hermite cubic interpolation function

FE Analysis of BEAM

FE Model

$$
\begin{aligned}
& \sum_{j=1}^{4}(\underbrace{\int_{x_{e}}^{x_{e+1}} b \frac{d^{2} N_{i}}{d x^{2}} \frac{d^{2} N_{j}}{d x^{2}} d x}_{\sum_{j=1}^{4} K_{i j} u_{j}-F_{i}}) u_{j}-(\underbrace{\int_{x_{e+1}} N_{i} f d x+Q_{i}^{e}}_{x_{e}})=0 \\
& \text { or } \quad
\end{aligned}
$$

For $\mathrm{b}=\mathrm{EI}$ constant and also a constant f over the element.

$$
[K]=\frac{2 E I}{h^{3}}\left[\begin{array}{cccc}
6 & -3 h & -6 & -3 h \\
-3 h & 2 h^{2} & 3 h & h^{2} \\
-6 & 3 h & 6 & 3 h \\
-3 h & h^{2} & 3 h & 2 h^{2}
\end{array}\right] ; \quad\{F\}=\frac{f h}{12}\left\{\begin{array}{l}
6 \\
-h \\
6 \\
h
\end{array}\right\}+\left\{\begin{array}{l}
Q_{1} \\
Q_{2} \\
Q_{3} \\
Q_{4}
\end{array}\right\}
$$

FE Analysis of 1D FIN

Model Boundary Value Problem

The DE is in the form of

$$
-\frac{d}{d x}\left(k A \frac{d T}{d x}\right)+P \beta T=A q+P \beta T_{\infty}
$$

k is thermal conductivity
β is convection heat transfer coefficient
T_{∞} is the ambient temperature

$$
T(0)=T_{0}, \quad Q=-k A \frac{\partial T}{\partial x}=Q_{0}
$$

q is the heat energy generated per unit volume

Physical Model

FE Model

FE Analysis of 1D FIN

Weak form

$$
\begin{aligned}
& K_{i j}=\int_{x_{A}}^{x_{g}}\left(k A \frac{d N_{i}}{d x} \frac{d N_{j}}{d x}+P \beta N_{i} N_{j}\right) d x \\
& f_{i}=\int_{x_{A}}^{x_{A}} N_{i}\left(q A+P \beta T_{\infty}\right) d x \\
& Q_{1}^{e}=\left(-k A \frac{d T}{d x}\right)_{x_{A}} ; \quad Q_{2}^{e}=\left(-k A \frac{d T}{d x}\right)_{x_{B}}
\end{aligned}
$$

Assume the lateral surfaces of the bar are isolated and the BCs

$$
\begin{aligned}
& -\frac{d}{d x}\left(k A \frac{d T}{d x}\right)=A q \\
& T(0)=T_{1}, \quad T(L)=T_{2}
\end{aligned}
$$

FE Analysis of $1 D$ FIN

Approximation of the solution

1- the approximation solution should be continuous and differentiable as required by the weak form. (nonzero coefficient matrix)
2- it should be a complete polynomial (capture all possible States, e.g. constant, linear,)
3- it should be an interpolant of variables at the nodes (satisfy EBCs)
Second Order 3 2 $\left\{\begin{array}{c}T=a+b x+c x^{2}, \quad T\left(x_{1}\right)=T_{1}, T\left(x_{2}\right)=T_{2}, T\left(x_{3}\right)=T_{3} \\ T=N_{1} T_{1}+N_{2} T_{2}+N_{3} T_{3} \\ N_{1}=(1-\bar{x} / \ell)(1-2 \bar{x} / \ell), \quad N_{2}=4 \bar{x} / \ell(1-\bar{x} / \ell), \quad N_{3}=-\bar{x} / \ell(1-2 \bar{x} / \ell)\end{array}\right.$

FE Analysis of 1D FIN

FE Model

Evaluating the integral using linear shape function

$$
\begin{aligned}
& {\left[K^{e}\right]\left\{T^{e}\right\}=\left\{f^{e}\right\}+\left\{Q^{e}\right\}} \\
& \frac{k A}{\ell}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
T_{1}^{e} \\
T_{2}^{e}
\end{array}\right\}=\frac{A q \ell}{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}+\left\{\begin{array}{l}
Q_{1}^{e} \\
Q_{2}^{e}
\end{array}\right\}
\end{aligned}
$$

For a uniform mesh $\ell=L / N$ and after assembling

$$
\frac{k A}{\ell}\left[\begin{array}{cccc}
1 & -1 & 0 & \ldots \\
-1 & 2 & -1 & \ldots \\
\cdots & \ldots & \ldots & \ldots \\
0 & 0 & -1 & 1
\end{array}\right]\left\{\begin{array}{l}
T_{1} \\
T_{2} \\
\vdots \\
T_{N+1}
\end{array}\right\}=\frac{A q \ell}{2}\left\{\begin{array}{l}
1 \\
2 \\
\vdots \\
1
\end{array}\right\}+\left\{\begin{array}{l}
Q_{1}^{1} \\
Q_{2}^{1}+Q_{1}^{2} \\
\vdots \\
Q_{1}^{N}
\end{array}\right\}
$$

FE Analysis of $1 D$ FIN

FE Model

Boundary conditions at nodes 1 and $N+1$

$$
\begin{aligned}
& T_{1}=T_{1} \\
& T_{N+1}=T_{N+1}
\end{aligned}
$$

Heat balance at global nodes $2,3, \ldots, N$

$$
Q_{2}^{e-1}+Q_{1}^{e}=0 \quad \text { for } e=2,3, \ldots, N
$$

After applying the above conditions:

$$
\frac{k A}{\ell}\left[\begin{array}{cccc}
1 & -1 & 0 & \ldots \\
-1 & 2 & -1 & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & -1 & 1
\end{array}\right]\left\{\begin{array}{l}
T_{1} \\
T_{2} \\
\vdots \\
T_{n+1}
\end{array}\right\}=\frac{A q \ell}{2}\left\{\begin{array}{l}
1 \\
2 \\
\vdots \\
1
\end{array}\right\}+\left\{\begin{array}{l}
Q_{1}^{1} \\
0 \\
\vdots \\
Q_{1}^{N}
\end{array}\right\}
$$

Virtual work as the 'weak form' of equilibrium equations for analysis of solids

In a general three-dimensional continuum the equilibrium equations of an elementary volume can be written in terms of the components of the symmetric cartesian stress tensor as

$$
\left\{\begin{array}{l}
L_{1} \\
L_{2} \\
L_{3}
\end{array}\right\}=\left\{\begin{array}{l}
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+b_{x}=0 \\
\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+b_{y}=0 \\
\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+b_{z}=0
\end{array}\right\} \boldsymbol{L}(\mathbf{u}(\mathbf{x}))=\mathbf{0},
$$

$\boldsymbol{b}=\left[\begin{array}{lll}b_{x} & b_{x} & b_{x}\end{array}\right]^{T}$ The body forces acting per unit volume
$\mathbf{u}=\left[\begin{array}{lll}u & v & w\end{array}\right]^{T} \quad$ The displacement vector

Virtual work as the 'weak form' of equilibrium equations for analysis of solids

The weighting function vector defined as $\delta \mathbf{u}=\left[\begin{array}{lll}\delta u & \delta v & \delta w\end{array}\right]^{T}$
We can now write the integral statement of equilibrium equations as

$$
\begin{aligned}
\int_{V} \delta \mathbf{u}^{T} \boldsymbol{L}(\mathbf{u}) d \mathrm{v} & =-\int_{V}\left[\delta u\left(\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+b_{x}\right)+\delta v\left(L_{2}\right)+\delta w\left(L_{3}\right)\right] d \mathrm{v} \\
& =0
\end{aligned}
$$

Integrating each term by parts and rearranging we can write this as

$$
\begin{align*}
& \int_{v}\left[\frac{\partial \delta u}{\partial x} \sigma_{x}+\left(\frac{\partial \delta u}{\partial y}+\frac{\partial \delta v}{\partial x}\right) \tau_{x y}+\cdots-\delta u b_{x}-\delta v b_{y}-\delta w b_{z}\right] d \mathrm{v} \tag{*}\\
& +\int_{\Gamma}\left[\delta u\left(\sigma_{x} n_{x}+\tau_{x y} n_{y}+\tau_{x z} n_{z}\right)+\delta v(. .)+\delta w(. .)\right] d \Gamma=0
\end{align*}
$$

Virtual work as the 'weak form' of equilibrium equations for analysis of solids

where $\mathbf{t}=\left\{\begin{array}{l}t_{x} \\ t_{y} \\ t_{z}\end{array}\right\}=\left\{\begin{array}{l}\sigma_{x} n_{x}+\tau_{x y} n_{y}+\tau_{x z} n_{z} \\ \tau_{x y} n_{x}+\sigma_{y} n_{y}+\tau_{y z} n_{z} \\ \tau_{x z} n_{x}+\tau_{y z} n_{y}+\sigma_{z} n_{z}\end{array}\right\}$ ore tractions acting per unit area $\begin{aligned} & \text { of the solid boundary surface } \Gamma\end{aligned}$
In the first set of bracketed terms in eq. (*) we can recognize immediately the small strain operators acting on $\delta \mathbf{u}$, which can be termed a virtual displacement.

We can therefore introduce a virtual strain defined as
$\delta \boldsymbol{\varepsilon}^{T}=\left\{\frac{\partial \delta u}{\partial x}, \frac{\partial \delta v}{\partial y}, \frac{\partial \delta w}{\partial z}, \frac{\partial \delta u}{\partial y}+\frac{\partial \delta v}{\partial x}, \frac{\partial \delta v}{\partial z}+\frac{\partial \delta w}{\partial y}, \frac{\partial \delta v}{\partial z}+\frac{\partial \delta w}{\partial y}\right\}^{T}=\mathbf{D} \delta \mathbf{u}^{T}$
Arranging the six stress components in a vector $\boldsymbol{\sigma}$ in an order corresponding to that used for $\delta \boldsymbol{\varepsilon}$, we can write Eq. (*) simply as

Virtual work as the 'weak form' of equilibrium equations for analysis of solids

$$
\int_{V} \delta \varepsilon^{T} \sigma d \mathrm{v}-\int_{V} \delta \mathbf{u}^{T} \mathbf{b} d \mathrm{v}-\int_{\Gamma} \delta \mathbf{u}^{T} \mathbf{t} d \Gamma=0
$$

we see from the above that the virtual work statement is precisely the weak form of equilibrium equations and is valid for non-linear as well as linear stress-strain (or stress-strain rate) relations.

