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Finite Element Method 

Integral Formulation 
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Some Mathematical Concepts 

Simply connected domain: If any two points of the domain can be 

Joint by a line lying entirely within the domain 

Class of a domain: A function of several variables is said to be of  

Class        in a domain if all its partial derivatives up to and 

including the mth order exist and are continuous in  

)(mC



0C F is continuous (i.e.                           exist but may not be 

continuous.) 

yfxf  / ,  /

Boundary Value Problems: A differential equation (DE) is said to be 

a BVP if the dependent variable and possibly its derivatives are 

required to take specified values on the boundary. 
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Some Mathematical Concepts 

Initial Value Problem: An IVP is one in which the dependent 

variable and possibly its derivatives are specified initially at t = 0 
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Initial and Boundary Value Problem: 
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Eigenvalue Problem: the problem of determining value l of  such that 
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Some Mathematical Concepts 

Integration-by-Part Formula: 
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Some Mathematical Concepts 

Gradient Theorem 
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Some Mathematical Concepts 

Divergence Theorem 
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Using gradient and divergence theorem, the following relations can 

Be derived! (Exercise) 
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Some Mathematical Concepts 

The components of equation (*) are: 
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Some Mathematical Concepts 

An integral in the form of 
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where integrand F(x,u,u’) is a given function of arguments x, u, u’ 

is called a functional  (a function of function) . 

A functional is said to be linear if and only if: 

)()()( vIuIvuI   scalarsare     , 

A functional B(u,v) is said to be bilinear if it is linear in each of its  

arguments 

),(),(),( 2121 vuBvuBvuuB   Linearity in the first argument 

),(),(),( 2121 vuBvuBvvuB   Linearity in the second argument 

Functionals 
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Some Mathematical Concepts 

Functionals 

A bilinear form B(u,v) is symmetric in its arguments if 

),(),( uvBvuB 

Example of linear functional is 
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Some Mathematical Concepts 
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Some Mathematical Concepts 
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Some Mathematical Concepts 
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Some Mathematical Concepts 
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Some Mathematical Concepts 
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Some Mathematical Concepts 
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Some Mathematical Concepts 
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Some Mathematical Concepts 

Consider the function )',,( uuxFF  for fixed value of x, F only 

depends on  

The change  v  in u, where   is constant and v is a function, is 

called variation of u and denoted by: 

vu  Variational Symbol 
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Some Mathematical Concepts 
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The Variational Symbol 
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Weak Formulation of BVP 

Weighted – integral and weak formulation 
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Consider the following DE 

Transverse deflection of a cable 

Axial deformation of a bar 

Heat transfer 

Flow through pipes 

Flow through porous media 

Electrostatics 
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Weak Formulation of BVP 

There are 3 steps in the development of a weak form, if exists, 

of any DE. 

STEP 1: 

Move all expression in DE to one side, multiply by w (weight  

function) and integral over the domain. 
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Weak Formulation of BVP 

STEP 2 

1-The integral (+) allows to obtain N independent equations 

2- The approximation function, , should be differentiable as many 

times as called for the original DE. 

3- The approximation function should satisfy the BCs. 

4- If the differentiation is distributed between w and  then the 

resulting integral form has weaker continuity conditions. 

Such a weighted-integral statement is called weak form. 

The weak form formulation has two main characteristics: 

-requires weaker continuity on the dependent variable and often 

results in a symmetric set of algebraic equations. 

- The natural BCs are included in the weak form, and therefore the 

approximation function is required to satisfy only the essential BCs. 



 
 

22 

Weak Formulation of BVP 

Returning to our example: 

0 0)(
000




































 

LLL

dx

du
wadxwq

dx

du
a

dx

dw
dxwq

dx

du
a

dx

d
w

Secondary Variable (SV):  

Coefficient of weight function and its derivatives  

xn
dx

du
aQ )( Natural Boundary Conditions (NBC) 

Primary Variable (PV): The dependent variable of the problem  
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Weak Formulation of BVP 
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Weak Formulation of BVP 

STEP 3: 

The last step is to impose the actual BCs of the problem w has to 

satisfy the homogeneous form of specified EBC. 

In weak formulation w has the meaning of a virtual change in PV. 

If PV is specified at a point, its variation is zero. 
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Linear and Bilinear Forms 

0)( 0
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Bilinear and symmetric in w and u ),( uwB

)(wl Linear 

)(),( wluwB 

Therefore, problem associated with the DE can be stated as one of  

finding the solution u such that 

holds for any w satisfies the homogeneous form of the EBC and  

continuity condition implied by the weak form 
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Linear and Bilinear Forms 

Assume wuu  *

Variational solution 

Satisfy EBC 

Actual solution 

Satisfy EBC+NBC 

Satisfy the homogeneous 

Form of EBC 

Looking at the definition of the variational symbol, w is the variation of the  

solution, i.e. uw 

Then )(),()(),( uluuBwluwB  
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Linear and Bilinear Forms 
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Substituting in (#), we have: 

In general, the relation  ),(
2

1
),( uuBuuB   holds only if  

),( uwB is bilinear and symmetric and )(wl is linear 

If B(w,u) is not linear but symmetric the functional I(u) can 

be derived but not from (##). (see Oden & Reddy, 1976, Reddy 1986) 

(##) 
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Linear and Bilinear Forms 

Equation          represents the necessary condition for the 

functional  I (u) to have an extremum value. For solid mechanics, 

I(u) represents the total potential energy functional and the 

statement of the total potential energy principle. 

0)( uI

Of all admissible function u, that which makes the total potential 

energy I(u) a minimum also satisfies the differential equation and 

natural boundary condition in (+). 
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 Example 1 

Some Examples 

Consider the following DE which arise in the study of the deflection 

of a cable or heat transfer in a fin (when c = 0). 
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 Example 1 

Some Examples 
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B is bilinear and symmetric and l is linear! (prove) 

Thus we can compute the quadratic functional form 
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 Example 2 

Some Examples 

Consider the following fourth-order DE (elastic bending of beam) 
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 Example 2 

Some Examples 
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 Example 2 

Some Examples 
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The functional I (w) can be written as: 
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Symmetric&Bilinear Linear 
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 Example 3 

Some Examples 

Consider a 2D heat transfer problem 
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Steady heat conduction in a two-dimensional domain  

Insulated 

q0 : uniform heat generation 

k  :   conductivity of the isotropic material 

T  : temperature 
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 Example 3 

Some Examples 

Step 1 
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 Example 3 

Some Examples 

Step 3 
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Substituting in (*) we have 
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 Example 3 

Some Examples 
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The quadratic functional is given by: 
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Conclusions 

1- The weak form of a DE is the same as the statement of the total 

potential energy. 

2- Outside solid mechanics I(u) may not have meaning of energy but 

it is still a use mathematical tools. 

3- Every DE admits a weighted-integral statement, or a weak form 

exists for every DE of order two or higher. 

4- Not every DE admits a functional formulation. For a DE to have 

a functional formulation, its bilinear form should be symmetric in its 

argument. 

5- Variational or FE methods do not require a functional, a weak 

form of the equation is sufficient. 

6- If a DE has a functional, the weak form is obtained by taking its 

first variation. 

Linear and Bilinear Forms 
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