Finite Element Method Integral Formulation

Some Mathematical Concepts

Simply connected domain: If any two points of the domain can be Joint by a line lying entirely within the domain

Class of a domain: A function of several variables is said to be of Class $C^{m}(\Omega)$ in a domain if all its partial derivatives up to and including the m th order exist and are continuous in Ω
$C^{0} \Longrightarrow F$ is continuous (i.e. $\partial f / \partial x, \partial f / \partial y$ exist but may not be continuous.)
Boundary Value Problems: A differential equation ($D E$) is said to be a BVP if the dependent variable and possibly its derivatives are required to take specified values on the boundary.
Example: $\quad-\frac{d}{d x}\left(a \frac{d u}{d x}\right)=f \quad 0<x<1, \quad u(0)=d_{0},\left(x \frac{d u}{d x}\right)_{x=1}=g_{0}$

Some Mathematical Concepts

Initial Value Problem: An IVP is one in which the dependent variable and possibly its derivatives are specified initially at $t=0$
Example: $\quad \rho \frac{d^{2} u}{d t^{2}}+a u=f \quad 0<t \leq t_{0}, \quad u(0)=u_{0},\left(\frac{d u}{d t}\right)_{t=0}=v_{0}$

Initial and Boundary Value Problem:

Example:

$$
\begin{aligned}
& -\frac{\partial}{\partial x}\left(a \frac{\partial u}{\partial x}\right)+\rho \frac{\partial u}{\partial t}=f(x, t) \text { for } 0<x<1 \text { and } 0<t \leq t_{0} \\
& u(0, t)=d_{0}(t),\left(a \frac{\partial u}{\partial x}\right)_{x=1}=g_{0}(t), u(x, 0)=u_{0}(x)
\end{aligned}
$$

Eigenvalue Problem: the problem of determining value λ of such that
$\begin{array}{ll}\text { Example: } & \lambda \text { Eigenvalue } \\ & u \text { Eigenfunction }\end{array}$

$$
\begin{aligned}
& -\frac{d}{d x}\left(a \frac{d u}{d x}\right)=\lambda u \quad 0<x<1 \\
& u(0)=0,\left(\frac{d u}{d x}\right)_{x=1}=0
\end{aligned}
$$

Some Mathematical Concepts

Integration-by-Part Formula:

First
$\frac{d}{d x}(w v)=\frac{d w}{d x} v+w \frac{d v}{d x} \Rightarrow \int_{a}^{b} w \frac{d v}{d x} d x=-\int_{a}^{b} v \frac{d w}{d x} d x+w(b) v(b)-w(a) v(a)$
Next
$\int_{a}^{b} w \frac{d^{2} u}{d x^{2}} d x=-\int_{a}^{b} \frac{d u}{d x} \frac{d w}{d x} d x+w(b) \frac{d u}{d x}(b)-w(a) \frac{d u}{d x}(a)$
Similarly
$\int_{a}^{b} v \frac{d^{4} w}{d x^{4}} d x=\int_{a}^{b} \frac{d^{2} w}{d x^{2}} \frac{d^{2} v}{d x^{2}} d x+\frac{d^{2} w}{d x^{2}}(a) \frac{d v}{d x}(a)-\frac{d^{2} w}{d x^{2}}(b) \frac{d v}{d x}(b)+v(b) \frac{d^{3} w}{d x^{3}}(b)-v(a) \frac{d^{3} w}{d x^{3}}(a)$

Some Mathematical Concepts

Gradient Theorem

But

$$
\int_{\Omega} \operatorname{grad} F d x d y=\int_{\Omega} \nabla F d x d y=\oint_{\Gamma} \hat{n} F d s
$$

$$
\nabla F=\frac{\partial F}{\partial x} i+\frac{\partial F}{\partial y} j, \quad \hat{n}=n_{x} i+n_{y} j
$$

Thus
or

$$
\int_{\Omega}\left(\frac{\partial F}{\partial x} i+\frac{\partial F}{\partial y} j\right) d x d y=\oint_{\Gamma}\left(n_{x} i+n_{y} j\right) F d s
$$

$$
\int_{\Omega}\left(\frac{\partial F}{\partial x}\right) d x d y=\oint_{\Gamma} F n_{x} d s
$$

$$
\int_{\Omega}\left(\frac{\partial F}{\partial y}\right) d x d y=\oint_{\Gamma} F n_{y} d s
$$

Some Mathematical Concepts

Divergence Theorem

$$
\begin{aligned}
& \int_{\Omega} d i v G d x d y=\int_{\Omega} \nabla \cdot G d x d y=\oint_{\Gamma} \hat{n} \cdot G d s \\
& \int_{\Omega}\left(\frac{\partial G_{x}}{\partial x}+\frac{\partial G_{y}}{\partial y}\right) d x d y=\oint_{\Gamma}\left(n_{x} G_{x}+n_{y} G_{y}\right) d s
\end{aligned}
$$

Using gradient and divergence theorem, the following relations can Be derived! (Exercise)
$\int_{\Omega}(\nabla G) w d x d y=-\int_{\Omega}(\nabla w) G d x d y+\oint_{\Gamma} \hat{n} w G d s \quad(*) \quad$ and
$-\int_{\Omega}\left(\nabla^{2} G\right) w d x d y=\int_{\Omega}(\nabla w) .(\nabla G) d x d y-\oint_{\Gamma} \frac{\partial G}{\partial n} w d s$

Some Mathematical Concepts

The components of equation (*) are:

$$
\begin{aligned}
& \int_{\Omega} \frac{\partial G}{\partial x} w d x d y=-\int_{\Omega} \frac{\partial w}{\partial x} G d x d y+\oint_{\Gamma} n_{x} w G d s \\
& \int_{\Omega} \frac{\partial G}{\partial y} w d x d y=-\int_{\Omega} \frac{\partial w}{\partial y} G d x d y+\oint_{\Gamma} n_{y} w G d s
\end{aligned}
$$

Some Mathematical Concepts

Functionals

An integral in the form of

$$
I(u)=\int_{a}^{b} F\left(x, u, u^{\prime}\right) d x, \quad u=u(x), \quad u^{\prime}=\frac{d u}{d x}
$$

where integrand $F\left(x, u, u^{\prime}\right)$ is a given function of arguments x, u, u^{\prime} is called a functional (a function of function).

A functional is said to be linear if and only if:

$$
I(\alpha u+\beta v)=\alpha I(u)+\beta I(v) \quad \alpha, \beta \text { are scalars }
$$

A functional $B(u, v)$ is said to be bilinear if it is linear in each of its arguments
$B\left(\alpha u_{1}+\beta u_{2}, v\right)=\alpha B\left(u_{1}, v\right)+\beta B\left(u_{2}, v\right) \quad$ Linearity in the first argument
$B\left(u, \alpha v_{1}+\beta v_{2}\right)=\alpha B\left(u, v_{1}\right)+\beta B\left(u, v_{2}\right) \quad$ Linearity in the second argument

Some Mathematical Concepts

Functionals

A bilinear form $B(u, v)$ is symmetric in its arguments if

$$
B(u, v)=B(v, u)
$$

Example of linear functional is

$$
I(v)=\int_{0}^{L} v f d x+\frac{d v}{d x}(L) M_{0}
$$

Example of bilinear functional is

$$
B(v, w)=\int_{0}^{L} a \frac{d v}{d x} \frac{d w}{d x} d x
$$

Some Mathematical Concepts

4.4.1 The Variational Operator

The delta operator δ used in conjunction with virtual quantities has special importance in variational methods. The operator is called the variational operator because it is used to denote a variation (or change) in a given quantity. In this section, we discuss certain operational properties of δ and elements of variational calculus. Using these tools, we can study the energy and variational principles of general problems.

Let $u=u(x)$ be the true configuration (i.e., the one corresponding to equilibrium) of a given mechanical system, and suppose that $u=\hat{u}$ on boundary S_{1} of the total boundary S. Then an admissible configuration is of the form

$$
\begin{equation*}
\bar{u}=u+\alpha v \tag{4.62}
\end{equation*}
$$

everywhere in the body, where v is an arbitrary function that satisfies the homogeneous geometric boundary condition of the system

$$
\begin{equation*}
v=0 \quad \text { on } S_{1} \tag{4.63}
\end{equation*}
$$

Some Mathematical Concepts

Figure 4.13 The variations of $u(x)$.
the space of admissible variations, as already mentioned. Figure 4.13 shows a typical competing function $\bar{u}(x)=u(x)+\alpha v(x)$ and a typical admissible variation $v(x)$.

Some Mathematical Concepts

Here αv is a variation of the given configuration u. It should be understood that the variations are small enough (i.e., α is small) not to disturb the equilibrium of the system, and the variation is consistent with the geometric constraint of the system. Equation (4.62) defines a set of varied configurations; an infinite number of configurations \bar{u} can be generated for a fixed v by assigning values to α. All of these configurations satisfy the specified geometric boundary conditions on boundary S_{1}, and therefore they constitute the set of admissible configurations. For any v, all configurations reduce to the actual one when α is zero. Therefore for any fixed $x, \alpha v$ can be viewed as a change or variation in the actual configuration u. This variation is often denoted by δu :

$$
\begin{equation*}
\delta u=\alpha v, \quad \delta\left(\frac{d u}{d x}\right)=\alpha\left(\frac{d v}{d x}\right)=\frac{d(\alpha v)}{d x}=\frac{d \delta u}{d x}, \tag{4.64}
\end{equation*}
$$

and δu is called the first variation of u.

Some Mathematical Concepts

Next, consider a function of the dependent variable u and its derivative $u^{\prime} \equiv$ $d u / d x$:

$$
\begin{equation*}
F=F\left(x, u, u^{\prime}\right) \tag{4,65}
\end{equation*}
$$

For fixed x, the change in F associated with a variation in u (and hence u^{\prime}) is

$$
\begin{align*}
\Delta F= & F\left(x, u+\alpha v, u^{\prime}+\alpha v^{\prime}\right)-F\left(x, u, u^{\prime}\right) \\
= & F\left(x, u, u^{\prime}\right)+\frac{\partial F}{\partial u} \alpha v+\frac{\partial F}{\partial u^{\prime}} \alpha v^{\prime} \\
& +\frac{(\alpha v)^{2}}{2!} \frac{\partial^{2} F}{\partial u^{2}}+\frac{2(\alpha v)\left(\alpha v^{\prime}\right)}{2!} \frac{\partial^{2} F}{\partial u \partial u^{\prime}}+\cdots-F\left(x, u, u^{\prime}\right) \\
= & \frac{\partial F}{\partial u} \alpha v+\frac{\partial F}{\partial u^{\prime}} \alpha v^{\prime}+O\left(\alpha^{2}\right), \tag{4.66}
\end{align*}
$$

Some Mathematical Concepts

where $O\left(\alpha^{2}\right)$ denotes terms of order α^{2} and higher. The first total variation of $F\left(x, u, u^{\prime}\right)$ is defined by

$$
\begin{align*}
\delta F & =\alpha\left[\lim _{\alpha \rightarrow 0} \frac{\Delta F}{\alpha}\right] \\
& =\alpha\left(\frac{\partial F}{\partial u} v+\frac{\partial F}{\partial u^{\prime}} v^{\prime}\right) \\
& =\frac{\partial F}{\partial u} \alpha v+\frac{\partial F}{\partial u^{\prime}} \alpha v^{\prime} \\
& =\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime} . \tag{4.67a}
\end{align*}
$$

Some Mathematical Concepts

Alternatively, the first variation may be defined as

$$
\begin{align*}
\delta F & =\alpha\left[\frac{d F\left(u+\alpha v, u^{\prime}+\alpha v^{\prime}\right)}{d \alpha}\right]_{\alpha=0} \\
& =\frac{\partial F}{\partial u} \alpha v+\frac{\partial F}{\partial u^{\prime}} \alpha v^{\prime} \\
& =\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime} . \tag{4.67b}
\end{align*}
$$

There is an analogy between the first variation of F and the total differential of F. The total differential of F is

$$
\begin{equation*}
d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial u} d u+\frac{\partial F}{\partial u^{\prime}} d u^{\prime} . \tag{4.68}
\end{equation*}
$$

Some Mathematical Concepts

If $G=G(u, v, w)$ is a function of several dependent variables (and possibly their derivatives), the total variation is the sum of partial variations:

$$
\begin{equation*}
\delta G=\delta_{u} G+\delta_{v} G+\delta_{w} G, \tag{4.70}
\end{equation*}
$$

where, for example, δ_{u} denotes the partial variation with respect to u. The variational operator can be interchanged with differential and integral operators:
(1) $\delta\left(\frac{d u}{d x}\right)=\alpha \frac{d v}{d x}=\frac{d}{d x}(\alpha v)=\frac{d}{d x}(\delta u)$.
(2) $\delta\left(\int_{0}^{a} u d x\right)=\alpha \int_{0}^{a} v d x=\int_{0}^{a} \alpha v d x=\int_{0}^{a} \delta u d x$.

Some Mathematical Concepts

The Variational Symbol

Consider the function $F=F\left(x, u, u^{\prime}\right)$ for fixed value of x, F only depends on u, u^{\prime}

The change αv in u, where α is constant and v is a function, is called variation of u and denoted by:

$$
\text { Variational Symbol } \longrightarrow \delta u=\alpha v
$$

In analogy with the total differential of a function

Note that

$$
\delta F=\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime}
$$

$$
d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial u} d u+\frac{\partial F}{\partial u^{\prime}} d u^{\prime}
$$

Some Mathematical Concepts

The Variational Symbol

$$
\begin{array}{ll}
\text { Also } & \delta\left(F_{1} \pm F_{2}\right)=\delta F_{1} \pm \delta F_{2} \\
& \delta\left(F_{1} F_{2}\right)=F_{2} \delta F_{1}+F_{1} \delta F_{2} \\
& \delta\left(\frac{F_{1}}{F_{2}}\right)=\frac{F_{2} \delta F_{1}-F_{1} \delta F_{2}}{F_{2}^{2}} \\
& \delta\left[\left(F_{1}\right)^{n}\right]=n\left(F_{1}\right)^{n-1} \delta F_{1}
\end{array}
$$

Furthermore

$$
\begin{aligned}
& \frac{d}{d x}(\delta u)=\frac{d}{d x}(\alpha v)=\alpha \frac{d v}{d x}=\alpha v^{\prime}=\delta u^{\prime}=\delta\left(\frac{d u}{d x}\right) \\
& \delta \int_{a}^{b} u(x) d x=\int_{a}^{b} \delta u(x) d x
\end{aligned}
$$

Weak Formulation of $B V P$

Weighted - integral and weak formulation

Consider the following DE

$$
\begin{aligned}
& \text { Transverse deflection of a cable } \\
& \text { Axial deformation of a bar } \\
& \text { Heat transfer } \\
& \text { Flow through pipes } \\
& \text { Flow through porous media } \\
& \text { Electrostatics }
\end{aligned}
$$

Weak Formulation of B VP

There are 3 steps in the development of a weak form, if exists, of any DE.

STEP 1:

Move all expression in DE to one side, multiply by w (weight function) and integral over the domain.

$$
\begin{equation*}
\int_{0}^{L} w\left[-\frac{d}{d x}\left(a \frac{d u}{d x}\right)-q\right] d x=0 \tag{+}
\end{equation*}
$$

Weighted-integral or weighted-residual

$$
u=U_{N}=\sum_{j=1}^{N} c_{j} \phi_{j}+\phi_{0} \quad \begin{aligned}
& N \text { linearly independent equation for } \\
& \text { obtain } N \text { equation for } c_{1}, \ldots, c_{N}
\end{aligned}
$$

Weak Formulation of $B V P$

STEP 2

1-The integral (+) allows to obtain N independent equations
2 - The approximation function, ϕ, should be differentiable as many times as called for the original DE.
3- The approximation function should satisfy the BCs.
4- If the differentiation is distributed between w and ϕ then the resulting integral form has weaker continuity conditions.
Such a weighted-integral statement is called weak form.
The weak form formulation has two main characteristics: -requires weaker continuity on the dependent variable and often results in a symmetric set of algebraic equations.

- The natural $B C s$ are included in the weak form, and therefore the approximation function is required to satisfy only the essential BCs.

Weak Formulation of B VP

Returning to our example:
$\int_{0}^{L}\left\{w\left[-\frac{d}{d x}\left(a \frac{d u}{d x}\right)\right]-w q\right\} d x=0 \Rightarrow \int_{0}^{L}\left(\frac{d w}{d x} a \frac{d u}{d x}-w q\right) d x-\left[w a \frac{d u}{d x}\right]_{0}^{L}=0$

Secondary Variable (SV):
Coefficient of weight function and its derivatives

$$
Q=\left(a \frac{d u}{d x}\right) n_{x}
$$

Natural Boundary Conditions (NBC)

Primary Variable (PV): The dependent variable of the problem

Essential Boundary Conditions (EBC)

Weak Formulation of $B V P$

$$
\begin{aligned}
& \int_{0}^{L}\left(\frac{d w}{d x} a \frac{d u}{d x}-w q\right) d x-\left[w a \frac{d u}{d x}\right]_{0}^{L}=0 \\
& \int_{0}^{L}\left(\frac{d w}{d x} a \frac{d u}{d x}-w q\right) d x-\left[w a \frac{d u}{d x} n_{x}\right]_{x=0}-\left[w a \frac{d u}{d x} n_{x}\right]_{x=L}=0 \\
& \int_{0}^{L}\left(\frac{d w}{d x} a \frac{d u}{d x}-w q\right) d x-(w Q)_{0}-(w Q)_{L}=0 \\
& \text { Note that } \begin{array}{ll}
n_{x}=-1 & x=0 \\
n_{x}=1 \quad x=L
\end{array}
\end{aligned}
$$

Weak Formulation of B VP

STEP 3:

The last step is to impose the actual BCs of the problem w has to satisfy the homogeneous form of specified EBC.
In weak formulation w has the meaning of a virtual change in PV. If PV is specified at a point, its variation is zero.

$$
\begin{aligned}
u(0)=u_{0} & \Rightarrow w(0)=0 \\
\left(a \frac{d u}{d x} n_{x}\right)_{x=L} & =\left(a \frac{d u}{d x}\right)_{x=L}=Q_{0} \mathrm{NBC}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{L}\left(\frac{d w}{d x} a \frac{d u}{d x}-w q\right) d x-\left[w a \frac{d u}{d x} n_{x}\right]_{x=0}-\left[w a \frac{d u}{d x} n_{x}\right]_{x=L}=0 \\
& \int_{0}^{L}\left(\frac{d w}{d x} a \frac{d u}{d x}-w q\right) d x-w(L) Q_{0}=0
\end{aligned}
$$

$$
\underbrace{\int_{0}^{L}\left(\frac{d w}{d x} a \frac{d u}{d x}\right)}_{B(w, u)} d x-\underbrace{\int_{0}^{L} w q d x-w(L) Q_{0}}_{l(w)}=0
$$

$B(w, u) \quad$ Bilinear and symmetric in w and u
$l(w) \quad$ Linear
Therefore, problem associated with the DE can be stated as one of finding the solution u such that $B(w, u)=l(w)$
holds for any w satisfies the homogeneous form of the EBC and continuity condition implied by the weak form

Linear and Bilinear Forms

Assume

Satisfy the homogeneous Form of EBC

Variational solution Satisfy EBC

> Actual solution Satisfy EBC+NBC

Looking at the definition of the variational symbol, w is the variation of the solution, i.e.

$$
w=\delta u
$$

Then $\quad B(w, u)=l(w) \Rightarrow B(\delta u, u)=l(\delta u)$

$$
\begin{align*}
& B(\delta u, u)=\int_{0}^{L} a \frac{d \delta u}{d x} \frac{d u}{d x} d x=\delta \int_{0}^{L} \frac{a}{2}\left[\left(\frac{d u}{d x}\right)^{2}\right] d x=\frac{1}{2} \delta \int_{0}^{L} a \frac{d u}{d x} \frac{d u}{d x} d x=\frac{1}{2} \delta[B(u, u)] \\
& l(\delta u)=\int_{0}^{L} \delta u q d x+\delta u(L) Q_{0}=\delta\left[\int_{0}^{L} u q d x+u(L) Q_{0}\right]=\delta[l(u)]
\end{align*}
$$

Linear and Bilinear Forms

Substituting in (\#), we have:

$$
\begin{align*}
& B(\delta u, u)-l(\delta u)=0 \Rightarrow \delta\left[\frac{1}{2} B(u, u)-l(u)\right]=0 \Rightarrow \delta I(u)=0 \\
& I(u)=\frac{1}{2} B(u, u)-l(u) \quad(\# \#)
\end{align*}
$$

In general, the relation $B(\delta u, u)=\frac{1}{2} \delta B(u, u)$ holds only if $B(w, u)$ is bilinear and symmetric and $l(w)$ is linear

If $B(w, u)$ is not linear but symmetric the functional $I(u)$ can be derived but not from (\#\#). (see Oden \& Reddy, 1976, Reddy 1986)

Linear and Bilinear Forms

Equation $\delta I(u)=0$ represents the necessary condition for the functional $I(u)$ to have an extremum value. For solid mechanics, $I(u)$ represents the total potential energy functional and the statement of the total potential energy principle.

Of all admissible function u, that which makes the total potential energy $I(u)$ a minimum also satisfies the differential equation and natural boundary condition in $(+)$.

Some Examples

Example 1

Consider the following $D E$ which arise in the study of the deflection of a cable or heat transfer in a fin (when $c=0$).

Step 1

$$
\begin{aligned}
& -\frac{d}{d x}\left(a \frac{d u}{d x}\right)-c u+x^{2}=0 \quad \text { for } 0<x<1 \\
& u(0)=0, \quad\left(a \frac{d u}{d x}\right)_{x=1}=1
\end{aligned}
$$

$$
\int_{0}^{1} w\left[-\frac{d}{d x}\left(a \frac{d u}{d x}\right)-c u+x^{2}\right] d x=0
$$

Step 2

$$
\int_{0}^{1}\left(a \frac{d w}{d x} \frac{d u}{d x}-c u w+w x^{2}\right) d x-\left(w a \frac{d u}{d x}\right)_{0}^{1}=0 \Longleftrightarrow \underset{\substack{ \\w(0)=0}}{\left(a \frac{d u}{d x}\right)_{x=1}=1 \quad N B C}
$$

Some Examples

- Example 1

Step $3 \int_{0}^{1}\left(a \frac{d w}{d x} \frac{d u}{d x}-c u w\right) d x+\int_{0}^{1} w x^{2} d x-w(1)=0$
or

$$
\begin{aligned}
& B(w, u)=\int_{0}^{1}\left(a \frac{d w}{d x} \frac{d u}{d x}-c u w\right) d x \\
& l(w)=-\int_{0}^{1} w x^{2} d x+w(1)
\end{aligned}
$$

B is bilinear and symmetric and I is linear! (prove)
Thus we can compute the quadratic functional form

$$
I(u)=\frac{1}{2} \int_{0}^{1}\left(a\left(\frac{d u}{d x}\right)^{2}-c u^{2}+2 u x^{2}\right) d x-u(1)
$$

Some Examples

- Example 2

Consider the following fourth-order $D E$ (elastic bending of beam)

$$
\begin{aligned}
& \frac{d^{2}}{d x^{2}}\left(b \frac{d^{2} w}{d x^{2}}\right)-f(x)=0 \quad \text { for } 0<x<L \\
& w(0)=\frac{d w(0)}{d x}=0, \quad\left(b \frac{d^{2} w}{d x^{2}}\right)_{x=L}=M_{0}, \quad \frac{d}{d x}\left(b \frac{d^{2} w}{d x^{2}}\right)_{x=L}=0
\end{aligned}
$$

Step 1

$$
\int_{0}^{L} v\left[\frac{d^{2}}{d x^{2}}\left(b \frac{d^{2} w}{d x^{2}}\right)-f\right] d x=0
$$

Step 2

$$
\int_{0}^{L}\left[\left(-\frac{d v}{d x}\right) \frac{d}{d x}\left(b \frac{d^{2} w}{d x^{2}}\right)-v f\right] d x+\left[v \frac{d}{d x}\left(b \frac{d^{2} w}{d x^{2}}\right)\right]_{0}^{L}=0
$$

Some Examples

- Example 2

$$
\begin{aligned}
& \int_{0}^{L}\left(b \frac{d^{2} v}{d x^{2}} \frac{d^{2} w}{d x^{2}}-v f\right) d x+\left[v \frac{d}{d x}\left(b \frac{d^{2} w}{d x^{2}}\right)-\frac{d v}{d x} b \frac{d^{2} w}{d x^{2}}\right]_{0}^{L}=0 \\
& \left.\frac{d}{d x}\left(b \frac{d^{2} w}{d x^{2}}\right)=V \quad \text { (Shear force }\right) \\
& \left.b \frac{d^{2} w}{d x^{2}}=M \quad \text { (Bending moment }\right) \\
& \text { B.C } \\
& w(0)=\frac{d w(0)}{d x}=0 \\
& v(0)=\frac{d v(0)}{d x}=0 \\
& \frac{d}{d x}\left(b \frac{d^{2} w}{d x^{2}}\right)_{x=L}=0 \\
& \left(b \frac{d^{2} w}{d x^{2}}\right)_{x=L}=M_{0}
\end{aligned}
$$

Some Examples

- Example 2

Step 3

$$
\int_{0}^{L}\left(b \frac{d^{2} v}{d x^{2}} \frac{d^{2} w}{d x^{2}}-v f\right) d x-\left[\frac{d v}{d x}\right]_{x=L} M_{0}=0
$$

The functional $I(W)$ can be written as:

$$
I(w)=\int_{0}^{L}\left[\frac{b}{2}\left(\frac{d^{2} w}{d x^{2}}\right)^{2}-w f\right] d x-\left[\frac{d w}{d x}\right]_{x=L} M_{0}
$$

Some Examples

- Example 3 Steady heat conduction in a two-dimensional domain Ω

Consider a 2D heat transfer problem

$$
-k\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)=q_{0} \quad \text { in } \Omega
$$

q_{0} : uniform heat generation
k : conductivity of the isotropic material T : temperature

Some Examples

- Example 3

Step 1

$$
\int_{\Omega} w\left[-k\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)-q_{0}\right] d x d y=0
$$

Step 2

$$
\begin{gather*}
\int_{\Omega}\left[k\left(\frac{\partial w}{\partial x} \frac{\partial T}{\partial x}+\frac{\partial w}{\partial y} \frac{\partial T}{\partial y}\right)-w q_{0}\right] d x d y-\prod_{\Gamma} w k\left(\frac{\partial T}{\partial x} n_{x}+\frac{\partial T}{\partial y} n_{y}\right) d s=0 \tag{*}\\
k\left(\frac{\partial T}{\partial x} n_{x}+\frac{\partial T}{\partial y} n_{y}\right)=k \frac{\partial T}{\partial n}=q_{n} \quad \begin{array}{c}
\text { T}=\text { Primary variable } \\
q_{n}=\text { Secondary variable (heat flux) }
\end{array}
\end{gather*}
$$

$$
\begin{aligned}
& \text { on } \Gamma_{1}=A B\left(n_{x}=-1, n_{y}=0\right) \Rightarrow \hat{q}(y) \\
& \text { on } \Gamma_{2}=B C\left(n_{x}=0, n_{y}=-1\right) \Rightarrow T_{0}(x) \\
& \text { on } \Gamma_{3}=C D\left(n_{x}=1, n_{y}=0\right) \Rightarrow k \frac{\partial T}{\partial n}+\beta\left(T-T_{\infty}\right)=0 \\
& \text { on } \Gamma_{4}=D A\left(n_{x}=0, n_{y}=1\right) \Rightarrow \frac{\partial T}{\partial n}=0
\end{aligned}
$$

Some Examples

- Example 3

Step 3

$$
\begin{aligned}
& \oint_{\Gamma} w k\left(\frac{\partial T}{\partial x} n_{x}+\frac{\partial T}{\partial y} n_{y}\right) d s=\oint_{\Gamma} w k\left(\frac{\partial T}{\partial n}\right) d s= \\
& \oint_{\Gamma_{1}} w q_{n} d s+\oint_{\Gamma_{2}} 0 k\left(\frac{\partial T}{\partial n}\right) d s-\oint_{\Gamma_{3}} w\left[\beta\left(T-T_{\infty}\right)\right] d s+\oint_{\Gamma_{4}} w(0) d s=
\end{aligned}
$$

w should satisfy the EBC

$$
-\int_{0}^{b} w(0, y) \hat{q}(y) d y-\beta \int_{0}^{b} w(a, y)\left[T(a, y)-T_{\infty}\right] d y
$$

Substituting in (*) we have
$\int_{\Omega}\left[k\left(\frac{\partial w}{\partial x} \frac{\partial T}{\partial x}+\frac{\partial w}{\partial y} \frac{\partial T}{\partial y}\right)-w q_{0}\right] d x d y+\int_{0}^{b} w(0, y) \hat{q}(y) d y+\beta \int_{0}^{b} w(a, y)\left[T(a, y)-T_{\infty}\right] d y=0$

$$
B(w, T)=l(w)
$$

Some Examples

- Example 3

$$
\begin{aligned}
& B(w, T)=\int_{\Omega}\left[k\left(\frac{\partial w}{\partial x} \frac{\partial T}{\partial x}+\frac{\partial w}{\partial y} \frac{\partial T}{\partial y}\right)\right] d x d y+\beta \int_{0}^{b} w(a, y) T(a, y) d y \\
& l(w)=\int_{\Omega} w q_{0} d x d y-\int_{0}^{b} w(0, y) \hat{q}(y) d y+\beta \int_{0}^{b} w(a, y) T_{\infty} d y
\end{aligned}
$$

The quadratic functional is given by:

$$
I(T)=\frac{k}{2} \int_{\Omega}\left[\left(\frac{\partial T}{\partial x}\right)^{2}+\left(\frac{\partial T}{\partial y}\right)^{2}\right] d x d y-\int_{\Omega} T q_{0} d x d y+\int_{0}^{b} T(0, y) \hat{q}(y) d y+\beta \int_{0}^{b} \frac{1}{2}\left[T^{2}(a, y)-2 T(a, y) T_{\infty}\right] d y
$$

Linear and Bilinear Forms

Conclusions

1- The weak form of a $D E$ is the same as the statement of the total potential energy.
2- Outside solid mechanics $I(u)$ may not have meaning of energy but it is still a use mathematical tools.
3- Every $D E$ admits a weighted-integral statement, or a weak form exists for every DE of order two or higher.
4- Not every DE admits a functional formulation. For a DE to have a functional formulation, its bilinear form should be symmetric in its argument.
5- Variational or FE methods do not require a functional, a weak form of the equation is sufficient.
6- If a DE has a functional, the weak form is obtained by taking its first variation.

References

1- An Introduction to the Finite Element Method, by: J. N. Reddy, 3rd ed., McGraw-Hill Education (2005). (chapter 2)

2- Energy Principles and Variational Methods in Applied Mechanics, by: J. N. Reddy, 2nd ed., John Wiley (2002). (chapter 7)

