Weighted Residual Methods

Formulation of FEM Model

Formulation of FEM Model $\left\{\begin{array}{l}\text { Direct Method } \\ \text { Variational Method } \\ \text { Weighted Residuals }\end{array}\right.$

- Several approaches can be used to transform the physical formulation of a problem to its finite element discrete analogue.
- If the physical formulation of the problem is described as a differential equation, then the most popular solution method is the Method of Weighted Residuals.
- If the physical problem can be formulated as the minimization of a functional, then the Variational Formulation is usually used.

Formulation of FEM Model

Finite element method is used to solve physical problems
Solid Mechanics
Fluid Mechanics
Heat Transfer
Electrostatics
Electromagnetism
Physical problems are governed by differential equations which satisfy Boundary conditions
Initial conditions

One variable: Ordinary differential equation (ODE)
Multiple independent variables: Partial differential equation (PDE)

Physical problems

Axially loaded elastic bar

Differential equation governing the response of the bar

$$
\frac{d}{d x}\left(A E \frac{d u}{d x}\right)+b=0 ; \quad 0<x<L
$$

Second order differential equations Requires 2 boundary conditions for solution

Physical problems

Axially loaded elastic bar

Boundary conditions (examples)

$$
\begin{array}{lll}
u=0 & \text { at } & x=0 \quad \text { Dirichlet/ displacement bc } \\
u=1 & \text { at } \quad x=L
\end{array} \quad \begin{aligned}
& \\
& \hline u=0 \quad \text { at } \quad x=0 \\
& E A \frac{d u}{d x}=F \quad \text { at } x=L \quad \text { Neumann/ force bc }
\end{aligned}
$$

Differential equation + Boundary conditions $=$ Strong form of the
"boundary value problem"

Physical problems

Flexible string

$S=$ tensile force in string $\mathrm{p}(\mathrm{x})=$ lateral force distribution (force per unit length) $\mathrm{w}(\mathrm{x})=$ lateral deflection of the string in the y -direction

Differential equation governing the response of the bar

$$
S \frac{d^{2} u}{d x^{2}}+p=0 ; \quad 0<x<L
$$

Second order differential equations
Requires 2 boundary conditions for solution

Physical problems

Heat conduction in a fin

$A(\mathrm{x})=$ cross section at x
$Q(\mathrm{x})=$ heat input per unit length per unit time [J/sm]
$k(\mathrm{x})=$ thermal conductivity $\left[\mathrm{J} /{ }^{\circ} \mathrm{C} \mathrm{ms}\right]$
$T(\mathrm{x})=$ temperature of the fin at x

Differential equation governing the response of the fin

$$
\frac{d}{d x}\left(A k \frac{d T}{d x}\right)+Q=0 ; \quad 0<x<L
$$

Second order differential equations
Requires 2 boundary conditions for solution

Physical problems

Heat conduction in a fin

Boundary conditions (examples)

$$
\begin{array}{lll}
T=0 & \text { at } & x=0
\end{array} \quad \text { Dirichlet/ displacement bc } 0 \text { Neumann/ force bc }
$$

Physical problems

Fluid flow through a porous medium (e.g., flow of water through a dam)

Differential equation

$$
\frac{d}{d x}\left(k \frac{d \varphi}{d x}\right)+Q=0 ; \quad 0<x<L
$$

$A(\mathrm{x})=$ cross section at x $Q(\mathrm{x})=$ fluid input per unit volume per unit time $k(x)=$ permeability constant $\varphi(\mathrm{x})=$ fluid head

Boundary conditions (examples)

$$
\begin{aligned}
& \varphi=0 \quad \text { at } \quad x=0 \quad \text { Known head } \\
& -k \frac{d \varphi}{d x}=h \quad \text { at } x=L \text { Known velocity }
\end{aligned}
$$

Second order differential equations
Requires 2 boundary conditions for solution

Physical problems

Table 4.1 Examples of second-order differential equations

Differential equation	Physical problem	Quantities	Constitutive law
$\frac{\mathrm{d}}{\mathrm{dx}}\left(A k \frac{\mathrm{~d} T}{\mathrm{~d} x}\right)+Q=0$	One-dimensional heat flow	$\begin{aligned} & T=\text { temperature } \\ & A=\text { area } \\ & k=\text { thermal conductivity } \\ & Q=\text { heat supply } \end{aligned}$	$\begin{aligned} & \text { Fourier } \\ & q=-k \mathrm{~d} T / \mathrm{d} x \\ & q=\text { heat fux } \end{aligned}$
$\frac{\mathrm{d}}{\mathrm{~d} x}\left(A E \frac{\mathrm{~d} u}{\mathrm{dx}}\right)+b=0$	Axially loaded elastic bar	$\begin{aligned} & u=\text { displacement } \\ & A=\text { area } \\ & E=\text { Young's modulus } \\ & b=\text { axial loading } \end{aligned}$	Hooke $\begin{aligned} & \sigma=E \mathrm{~d} u / \mathrm{d} x \\ & \sigma=\text { stress } \end{aligned}$
$S \frac{\mathrm{~d}^{2} w}{\mathrm{~d} \mathrm{x}^{2}}+p=0$	Transversely loaded flexible string	$w=$ deflection $S=$ string force $p=$ lateral loading	
$\frac{\mathrm{d}}{\mathrm{dx}}\left(A D \frac{\mathrm{~d} c}{\mathrm{~d} x}\right)+Q=0$	One-dimensional dilfusion	$\begin{aligned} & c=\text { iron concentration } \\ & A=\text { area } \\ & D=\text { diffusion coefficient } \\ & Q=\text { ion supply } \end{aligned}$	Fick $\begin{aligned} & q=-D \mathrm{~d} c / \mathrm{d} x \\ & q=\text { ion flux } \end{aligned}$

Physical problems

Table 4.1 Examples of second-order differential equations

Differential equation	Physical problem	Quantities	Constitutive law
$\frac{d}{d r}\left(A \gamma \frac{d V}{d x}\right)+Q=0$	One-dimensional electric current	$\begin{aligned} & V=\text { voltage } \\ & A=\text { area } \\ & \because=\text { electric conductivity } \\ & Q=\text { electric chatge supply } \end{aligned}$	Ohm $\begin{aligned} & q=-\gamma \mathrm{dV} / \mathrm{d} x \\ & q=\text { electric charge flux } \end{aligned}$
$\left(A \frac{D^{2}}{32 \mu} \frac{\mathrm{~d} p}{\mathrm{dx}}\right)+Q=0$	Laminar flow in pipe (Poiscuille flow)	$\begin{aligned} & p=\text { pressure } \\ & A=\text { area } \\ & D=\text { diameler } \\ & \mu=\text { viscosity } \\ & Q=\text { fluid supply } \end{aligned}$	$\begin{aligned} & q=-\left(D^{2} / 32 \mu\right) \mathrm{d} p / \mathrm{d} x \\ & q=\text { volume flux } \\ & q=\text { mean velocity } \end{aligned}$

Formulation of FEM Model

Observe:

1. All the cases we considered lead to very similar differential equations and boundary conditions.
2. In $1 D$ it is easy to analytically solve these equations
3. Not so in 2 and 3D especially when the geometry of the domain is complex: need to solve approximately
4. We'll learn how to solve these equations in 1D. The approximation techniques easily translate to 2 and 3D, no matter how complex the geometry

Formulation of FEM Model

A generic problem in 1D

$$
\begin{aligned}
& \frac{d^{2} u}{d x^{2}}+x=0 ; \quad 0<x<1 \\
& u=0 \quad \text { at } x=0 \\
& u=1 \quad \text { at } \quad x=1
\end{aligned}
$$

Analytical solution

$$
u(x)=-\frac{1}{6} x^{3}+\frac{7}{6} x
$$

Assume that we do not know this solution.

Formulation of FEM Model

A generic problem in 1D

A general algorithm for approximate solution:
Guess $u(x) \approx a_{0} \varphi_{o}(x)+a_{1} \varphi_{1}(x)+a_{2} \varphi_{2}(x)+\ldots$
where $\varphi_{0}(x), \varphi_{1}(x), \ldots$ are "known" functions and a_{o}, a_{l}, etc are constants chosen such that the approximate solution

Satisfies the differential equation
Satisfies the boundary conditions
i.e.,

$$
\begin{aligned}
& a_{0} \frac{d^{2} \varphi_{o}(x)}{d x^{2}}+a_{1} \frac{d^{2} \varphi_{1}(x)}{d x^{2}}+a_{2} \frac{d^{2} \varphi_{2}(x)}{d x^{2}}+\ldots+x=0 ; \quad 0<x<1 \\
& a_{0} \varphi_{o}(0)+a_{1} \varphi_{1}(0)+a_{2} \varphi_{2}(0)+\ldots=0 \\
& a_{0} \varphi_{o}(1)+a_{1} \varphi_{1}(1)+a_{2} \varphi_{2}(1)+\ldots=1
\end{aligned}
$$

Solve for unknowns a_{o}, a_{l}, etc and plug them back into

$$
u(x) \approx a_{0} \varphi_{o}(x)+a_{1} \varphi_{1}(x)+a_{2} \varphi_{2}(x)+\ldots
$$

This is your approximate solution to the strong form

Formulation of FEM Model

Solution of Continuous Systems - Fundamental Concepts

Exact solutions

limited to simple geometries and boundary \& loading conditions

Approximate Solutions

Reduce the continuous-system mathematical model to a discrete idealization

Variational

* Rayleigh Ritz Method

Weighted Residual Methods

* Galerkin
* Least Square
- Collocation
* Subdomain

Weighted Residual Methods

Weighted Residual Formulations

Consider a general representation of a governing equation on a region V

$$
L u=0
$$

L is a differential operator
eg. For Axial element $\quad \frac{d}{d x}\left(E A \frac{d u}{d x}\right)-P(x)=0$

$$
L=\frac{d}{d x} E A \frac{d}{d x}()-P(x)
$$

Assume approximate solution
u
then

$$
L u=R
$$

Weighted Residual Methods

Weighted Residual Formulations

Approximate

$E R R O R=L(u)=R$

Objective:

Define \boldsymbol{u} so that weighted average of Error vanishes
Set Error relative to a weighting function w

$$
\int_{V} w L(u) d V=0 \quad \text { or } \quad \int_{V} w R d V=0
$$

Weighted Residual Methods

Weighted Residual Formulations

Weighted Residual Methods

Weighted Residual Formulations

\qquad

Weighted Residual Methods

- Start with the integral form of governing equations
- Assume functional form for trial (interpolation, shape) functions
- Minimize errors (residuals) with selected weighting functions
$w_{j}(x)=\left\{\begin{array}{lc}x^{j} & \text { Power series } \\ \sin j x, \cos j x & \text { Fourier series } \\ L_{j}(x) & \text { Lagrange } \\ H_{j}(x) & \text { Hermite } \\ T_{j}(x) & \text { Chebychev }\end{array}\right.$

Weighted Residual Methods

- Assume certain profile (trial or shape function) between nodes

$$
\left\{\begin{array}{l}
L(u)=R(x) \neq 0, \quad \text { but } \\
\int w R d x=\int w L(u) d x=0
\end{array}\right.
$$

Residual
Weighted Residual

Weighted Residual Methods

- In general, we deal with the numerical integration of trial or interpolation functions
- Trial functions:
constant, linear, quadratic, sinusoidal, Chebychev polynomial,
- Weighting functions:
subdomain, collocation, least square, Galerkin,

$$
\int_{V} w(x, y, z) R(x, y, z) d x d y d z=\int_{V} w L(u) d v=0
$$

General Formulation

- Weighted Residual Methods (WRMs)
- Construct an approximate solution

$$
u(x, y, z)=u_{o}(x, y, z)+\sum_{j=1}^{J} a_{j} \phi_{j}(x, y, z)
$$

Chosen to satisfy I.C./B.C.s if possible

- Steady problems - system of algebraic equations for trial function $\phi_{j}(x, y, z)$
|| Transient problems - system of ODEs in time

Weighted Residual Methods

- Consider one-dimensional diffusion equation

$$
\begin{cases}L(\bar{u})=0 & \text { Exact solution } \\ L(u)=R(x) \neq 0 & \text { Approximation }\end{cases}
$$

I. In general, $\mathrm{R} \rightarrow 0$ with increasing J (higher-order)

$$
\iiint w_{m}(x, y, z) R(x, y, z) d x d y d z=0, \quad m=1,2, \cdots, M
$$

- Weak form - integral form, discontinuity allowed (discontinuous function and/or slope)

Weighted Residual Methods

|| Weak form - integral formulation

$$
\begin{cases}\text { Differential Form: } & L(\bar{u})=0 \\ \text { Exact Integral Form: } & \iiint w(x, y, z) L(\bar{u}) d x d y d z=0 \\ \text { Discretization: } & \iiint w_{m}(x, y, z) L(u) d x d y d z=0\end{cases}
$$

\| $R \neq 0$, but "weighted R " $=0$

- Choices of shape or interpolation functions?
- Choices of weighting functions?

Subdomain Method

$\iiint w_{m}(x, y, z) L(u) d x d y d z=0$
Equivalent to finite volume method

$$
w_{m}= \begin{cases}1, & \text { in } D_{m} \\ 0, & \text { outside } D_{m}\end{cases}
$$

$\iiint w_{m} L(u) d x d y d z=\iiint_{D_{m}} R(x, y, z) d v=0$
D_{m} : numerical element (arbitrary control volume)
D_{m} may be overlapped

Collocation Method

$$
\iiint w_{m}(x, y, z) L(u) d x d y d z=0 ; \quad L(u)=R \neq 0
$$

Zero residuals at selected locations (X_{m}, y_{m}, Z_{m})

$$
w_{m}(\vec{x})=\delta\left(\vec{x}-\vec{x}_{m}\right)
$$

$$
\begin{aligned}
\iiint w_{m}(\vec{x}) R(\vec{x}) d v & =\iiint \delta\left(\vec{x}-\vec{x}_{m}\right) R(\vec{x}) d v \\
=R\left(\vec{x}_{m}\right) & =R\left(x_{m}, y_{m}, z_{m}\right)
\end{aligned}
$$

No control on the residuals between nodes

Least Square Method

$$
\iiint w_{m}(x, y, z) L(u) d x d y d z=0 ; \quad L(u)=R \neq 0
$$

Minimize the square error

$$
\begin{array}{ll}
\frac{\partial}{\partial a_{m}} \int_{V} R^{2}\left(x, y, z, a_{m}\right) d x d y d z=0 \Rightarrow \int_{V} \frac{\partial R}{\partial a_{m}} R d x d y d z=0 \\
w_{m}(\vec{x})=\frac{\partial R}{\partial a_{m}} & \text { Square errc } \\
\mathrm{R}^{2} \neq 0 \\
\iiint_{m}(\vec{x}) R(\vec{x}) d \vec{x}=\frac{1}{2} \frac{\partial}{\partial a_{m}} \iiint^{2} d \vec{x}=0 & R^{2} \geq 0
\end{array}
$$

Galerkin Method

$$
\iiint w_{m}(x, y, z) L(u) d x d y d z=0 ; \quad L(u)=R \neq 0
$$

- Weighting function $=$ trial (interpolation) function

$$
\begin{aligned}
& w_{m}(\vec{x})=\phi_{m}(\vec{x}) \\
& \iiint w_{m}(\vec{x}) R(\vec{x}) d \vec{x}=\iiint \phi_{m}(\vec{x}) R(\vec{x}) d \vec{x}
\end{aligned}
$$

- For orthogonal polynomials, the residual R is orthogonal to every member of a complete set!

Numerical Accuracy

- How do we determine the most accurate method?
- How should the error be "weighted"?

Zero average error?
Least square error?

- Least rms error?
- Minimum error within selected domain?
- Minimum (zero) error at selected points?
- Minimax - minimize the maximum error?
- Some functions have fairly uniform error distributions comparing to the others

Application to an $O D E$

- Consider a simple ODE (Initial value problem)

$$
\left\{\begin{array}{l}
\frac{d \bar{y}}{d x}-\bar{y}=0, \quad 0 \leq x \leq 1 \\
\bar{y}(0)=1
\end{array} \Rightarrow \bar{y}=e^{x}\right.
$$

- Use global method with only one element
- Select a trial function of the form of

$$
y=1+\sum_{j=1}^{N} a_{j} x^{j}
$$

- Automatically satisfy the auxiliary condition
- $a_{j}=$ constant, not a function of time

Application to an $O D E$

- Consider a cubic interpolation function with $\mathrm{N}=3$

$$
y=1+\sum_{j=1}^{N} a_{j} x^{j}=1+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

QUESTION: Which cubic polynomial gives the best fit to the exact (exponential function) solution?

- Definition of best fit?
- Zero average error, least square, least rms, ...?

Residual

- Substitute the trial function into governing equation

$$
R=L(y)=\frac{d y}{d x}-y=\sum_{j=1}^{N} j a_{j} x^{j-l}-\left(1+\sum_{j=l}^{N} a_{j} x^{j}\right)=-l+\sum_{j=1}^{N} a_{j} x^{j-l}(j-x)
$$

- For cubic interpolation function $\mathrm{N}=3$

$$
\begin{aligned}
R(x) & =-1+a_{1}(1-x)+a_{2}\left(2 x-x^{2}\right)+a_{3}\left(3 x^{2}-x^{3}\right) \\
& =\left(a_{1}-1\right)+\left(2 a_{2}-a_{1}\right) x+\left(3 a_{3}-a_{2}\right) x^{2}-a_{3} x^{3} \neq 0
\end{aligned}
$$

- The residual is a cubic polynomial $\Rightarrow R \neq 0$
- Determine the optimal values of a_{j} to minimize the error (under pre-selected weighting functions)

Subdomain Method

I Zero average error in each subdomain

$$
\begin{aligned}
& \text { Uniform spacing } \\
& \int_{0}^{1} w_{m} R d x=\int_{x_{m-1}}^{x_{m}} R(x) d x=0=\left.\left\{\left(a_{1}-1\right) x+\left(a_{2}-\frac{a_{1}}{2}\right) x^{2}+\left(a_{3}-\frac{a_{2}}{3}\right) x^{3}-\frac{a_{3}}{4} x^{4}\right\}\right|_{x_{m-1}} ^{x_{m}} \\
& m=1: \quad \int_{0}^{1 / 3} R d x=0 \quad \Rightarrow \frac{5}{18} a_{1}+\frac{8}{81} a_{2}+\frac{11}{324} a_{3}=\frac{1}{3} \\
& m=2: \quad \int_{1 / 3}^{2 / 3} R d x=0 \Rightarrow \frac{3}{18} a_{1}+\frac{20}{81} a_{2}+\frac{69}{324} a_{3}=\frac{1}{3} \\
& m=3: \quad \int_{2 / 3}^{1} R d x=0 \quad \Rightarrow \frac{1}{18} a_{1}+\frac{26}{81} a_{2}+\frac{163}{324} a_{3}=\frac{1}{3} \\
& \vec{a}_{i}=\left[\begin{array}{l}
1.0156 \\
0.4219 \\
0.2813
\end{array}\right]
\end{aligned}
$$

Note: $R(0)=0.0156 \neq 0, R(1)=-0.0155 \neq 0$

Subdomain Method

Subdomain Method

Subdomain Method

| Nonuniform subdomains?

Grid clustering in highgradient regions

$$
\begin{cases}m=1: & \int_{x_{0}}^{x_{1}} R d x=0 \\ m=2: & \int_{x_{1}}^{x_{2}} R d x=0 \\ m=3: & \int_{x_{2}}^{x_{3}} R d x=0\end{cases}
$$

Different coefficients

 for different choices of subdomains
Least Square Method

- Minimum square errors over the entire domain

$$
\begin{aligned}
& R(x)=-1+\sum_{m=1}^{N} a_{m}\left(m x^{m-1}-x^{m}\right) \quad \Rightarrow \frac{\partial R}{\partial a_{m}}=m x^{m-1}-x^{m} \\
& \int_{0}^{l} w_{m} R d x=\int_{0}^{l} \frac{\partial R(x)}{\partial a_{m}} R(x) d x=0 \\
& =-\int_{0}^{1}\left(m x^{m-1}-x^{m}\right) d x+\sum_{j=1}^{N} a_{j} \int_{0}^{l}\left[m j x^{m+j-2}-(j+m) x^{m+j-l}+x^{m+j}\right] d x
\end{aligned}
$$

- For arbitrary N (symmetric matrix)

$$
\sum_{j=1}^{N} a_{j}\left(\frac{m j}{m+j-1}-1+\frac{1}{m+j+1}\right)=1-\frac{1}{m+1}=\frac{m}{m+1}
$$

Least Square Method

- For cubic interpolation function ($\mathrm{N}=3$)

$$
\begin{aligned}
& R=\left(a_{1}-1\right)+\left(2 a_{2}-a_{1}\right) x+\left(3 a_{3}-a_{2}\right) x^{2}-a_{3} x^{3} \\
& m=1, w_{l}=\frac{\partial R}{\partial a_{1}}=1-x \quad \Rightarrow \int_{0}^{1}(1-x) R d x=0 \\
& m=2, \quad w_{2}=\frac{\partial R}{\partial a_{2}}=2 x-x^{2} \quad \Rightarrow \int_{0}^{1}\left(2 x-x^{2}\right) R d x=0 \\
& m=3, \quad w_{3}=\frac{\partial R}{\partial a_{3}}=3 x^{2}-x^{3} \Rightarrow \int_{0}^{1}\left(3 x^{2}-x^{3}\right) R d x=0
\end{aligned}
$$

- Nonuniform weighting of residuals over the domain

Least Square Method

- Cubic trial function

$$
\begin{gathered}
\sum_{j=l}^{3} a_{j}\left(\frac{m j}{m+j-1}-\frac{m+j}{m+j+1}\right)=\frac{m}{m+1} \\
\begin{cases}m=1, & \frac{1}{3} a_{l}+\frac{1}{4} a_{2}+\frac{1}{5} a_{3}=\frac{1}{2} \\
m=2, & \frac{1}{4} a_{l}+\frac{8}{15} a_{2}+\frac{2}{3} a_{3}=\frac{2}{3} \Rightarrow \quad \vec{a}_{i}=\left[\begin{array}{l}
1.0131 \\
0.4255 \\
0.2797
\end{array}\right] \\
m=3, \quad \frac{1}{5} a_{l}+\frac{2}{3} a_{2}+\frac{33}{35} a_{3}=\frac{3}{4}\end{cases} \\
\mathrm{R}(0)=0.0131 \neq 0, \quad \mathrm{R}(1)=-0.0151 \neq 0
\end{gathered}
$$

Least Square Method

Least Square Method

Least Square Method

Galerkin Method

- Weighting function $=$ Trial function

$$
\begin{gathered}
\left\{\begin{array}{l}
\phi_{m}(x)=x^{0}, x^{1}, x^{2}, x^{3}, \cdots, x^{N-1} \\
w_{m}(x)=\phi_{m}(x)=x^{m-1}
\end{array}\right. \\
R(x)=-1+\sum_{m=1}^{N} a_{m}\left(m x^{m-1}-x^{m}\right)
\end{gathered} \int_{0}^{l} w_{m} R d x=\int_{0}^{l} x^{m-1} R(x) d x=0=-\int_{0}^{l} x^{m-1} d x+\sum_{j=1}^{N} a_{j} \int_{0}^{l}\left(j x^{m+j-2}-x^{m+j-1}\right) d x .
$$

Galerkin Method

- For cubic interpolation function ($\mathrm{N}=3$)

$$
\begin{aligned}
& R=\left(a_{1}-1\right)+\left(2 a_{2}-a_{1}\right) x+\left(3 a_{3}-a_{2}\right) x^{2}-a_{3} x^{3} \\
& \begin{cases}m=1, W_{1}=x^{0}=1 & \Rightarrow \int_{0}^{1} R d x=0 \\
m=2, W_{2}=x^{1}=x & \Rightarrow \int_{0}^{1} x R d x=0 \\
m=3, W_{3}=x^{2} & \Rightarrow \int_{0}^{1} x^{2} R d x=0\end{cases}
\end{aligned}
$$

- Small weighting of residuals near $x=0$

L Largest weight for residuals near $x=1$

Galerkin Method

- Cubic trial function

$$
\begin{gathered}
\sum_{j=1}^{3} a_{j}\left(\frac{j}{m+j-1}-\frac{1}{m+j}\right)=\frac{1}{m} \\
\begin{cases}m=1, & \frac{1}{2} a_{1}+\frac{2}{3} a_{2}+\frac{3}{4} a_{3}=1 \\
m=2, & \frac{1}{6} a_{1}+\frac{5}{12} a_{2}+\frac{11}{20} a_{3}=\frac{1}{2} \Rightarrow \vec{a}_{i}=\left[\begin{array}{l}
1.0141 \\
0.4225 \\
0.2817
\end{array}\right] \\
m=3, & \frac{1}{12} a_{1}+\frac{3}{10} a_{2}+\frac{13}{30} a_{3}=\frac{1}{3}\end{cases} \\
\left\{\begin{array}{l}
y(x)=1+1.0141 x+0.4225 x^{2}-0.2817 x^{3} \\
R(x)=0.0141-0.1691 x+0.4226 x^{2}-0.2817 x^{3}
\end{array}\right. \\
\mathrm{R}(0)=0.0141 \neq 0, \quad \mathrm{R}(1)=-0.0141 \neq 0
\end{gathered}
$$

Galerkin Method

Galerkin Method

Order of approximation:

Linear, Quadratic, and Cubic Trial functions

Galerkin Method

Table 5.1. Galerkin solutions of $d y / d x-y=0$

	Approximate solution		Exact solution, $\bar{y}=\exp (x)$	
x	Linear $(N=1)$	Quadratic $(N=2)$	Cubic $(N=3)$	
0.	1.0	1.0	1.0	1.0
0.2	1.4	1.2057	1.2220	1.2214
0.4	1.8	1.8229	1.4913	1.4918
0.6	2.2	2.2349	1.8214	1.8221
0.8	2.6	2.7143	2.2259	2.2251
1.0	3.0			2.7183
Solution	0.2857	0.00886	0.00046	-
err. (rms)			0.00486	-
$R_{\text {rms }}$	0.5271			

Galerkin Method

- Alternative choice of weighting functions

$$
\begin{aligned}
R= & \left(a_{1}-1\right)+\left(2 a_{2}-a_{1}\right) x+\left(3 a_{3}-a_{2}\right) x^{2}-a_{3} x^{3} \\
& =-1+(1-x) a_{1}+\left(2 x-x^{2}\right) a_{2}+\left(3 x^{2}-x^{3}\right) a_{3}=-1+\sum_{j=1}^{3} a_{j} \phi_{j} \\
& \begin{cases}m=1, \quad W_{1}=1-x & \Rightarrow \int_{0}^{1}(1-x) R d x=0 \\
m=2, \quad W_{2}=2 x-x^{2} & \Rightarrow \int_{0}^{1}\left(2 x-x^{2}\right) R d x=0 \\
m=3, \quad W_{3}=3 x^{2}-x^{3} & \Rightarrow \int_{0}^{1}\left(3 x^{2}-x^{3}\right) R d x=0\end{cases}
\end{aligned}
$$

- More uniform weighting functions
- Identical to the least square method

Collocation Method

$\mathrm{R}=\mathrm{L}(\mathrm{u})=0$ at collocation points

$$
\begin{aligned}
& \int_{0}^{1} w_{m} R d x=R\left(x_{m}\right)=\left(a_{1}-1\right)+\left(2 a_{2}-a_{1}\right) x_{m}+\left(3 a_{3}-a_{2}\right) x_{m}^{2}-a_{3} x_{m}^{3} \\
& \left\{\begin{array}{ll}
m=1: x_{1}=0 & \Rightarrow a_{1}=1 \\
m=2: x_{2}=\frac{1}{2} & \Rightarrow \frac{1}{2} a_{1}+\frac{3}{4} a_{2}+\frac{5}{8} a_{3}=1 \\
m=3: x_{3}=1 & \Rightarrow a_{2}+2 a_{3}=1
\end{array} \vec{a}_{i}=\left[\begin{array}{c}
1 \\
3 / 7 \\
2 / 7
\end{array}\right]=\left[\begin{array}{c}
1 \\
0.4286 \\
0.2857
\end{array}\right]\right.
\end{aligned}
$$

$$
y(x)=1+x+\frac{3}{7} x^{2}+\frac{2}{7} x^{3} \Rightarrow y(1)=2 \frac{5}{7} \neq e=2.71828 \cdots
$$

Identical to Galerkin method if the residuals are evaluated at $\mathrm{x}=$ $0.1127,0.5,0.8873$

Collocation Method

Collocation Method

Taylor-series Expansion

Truncated Taylor-series

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \Rightarrow \vec{a}_{i}=\left[\begin{array}{c}
1 \\
1 / 2 \\
1 / 6
\end{array}\right]=\left[\begin{array}{c}
1 \\
0.5 \\
0.1667
\end{array}\right]
$$

$\mathrm{R}(0)=0, \quad \mathrm{R}(1)=-1 / 6=-0.1667 \neq 0$
Poor approximation at $x=1$
Power series has highly nonuniform error distribution

Interpolation Functions

Table 5.2. Comparison of coefficients for approximate solutions of $d y / d x-y=0$

| Scheme Coefficient | | | |
| :--- | :--- | :--- | :--- | :--- |
| | a_{1} | a_{2} | a_{3} |
| Galerkin | 1.0141 | 0.4225 | 0.2817 |
| Least squares | 1.0131 | 0.4255 | 0.2797 |
| Subdomain | 1.0156 | 0.4219 | 0.2813 |
| Collocation | 1.0000 | 0.4286 | 0.2857 |
| Optimal rms | 1.0138 | 0.4264 | 0.2781 |
| Taylor series | 1.0000 | 0.5000 | 0.1667 |

Numerical Accuracy

Table 5.3. Comparison of approximate solutions of $d y / d x-y=0$

	Galerkin	Least squares	Sub- domain	Collo- cation	Optimal rms	Taylor series	Exact
x	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.	1.2220	1.2219	1.2213	1.2194	1.2220	1.2213	1.2214
0.2	1.4913	1.4912	1.4917	1.4869	1.4915	1.4907	1.4918
0.4	1.8214	1.8214	1.8220	1.8160	1.8219	1.8160	1.8221
0.6	2.2259	2.2260	2.2265	2.2206	2.2263	2.2053	2.2255
0.8	2.7183	2.7183	2.7187	2.7143	2.7183	2.6667	2.7183
1.0							
Solution	0.000458	0.000474	0.000576	0.004188	0.000434	0.022766	-
error							
(rms)							

Interpolation Functions

Comparison of numerical errors
 for weighted residual methods

