

Weighted Residual Methods

وانشگام صنمتی اصفهان۔ وانشکوم

روش اجزای محدود

Formulation of FEM ModelDirect MethodVariational MethodWeighted Residuals

• Several approaches can be used to transform the physical formulation of a problem to its finite element discrete analogue.

• If the physical formulation of the problem is described as a differential equation, then the most popular solution method is the Method of Weighted Residuals.

• If the physical problem can be formulated as the minimization of a functional, then the *Variational Formulation* is usually used.

Finite element method is used to solve physical problems

Solid Mechanics Fluid Mechanics Heat Transfer Electrostatics Electromagnetism

Physical problems are governed by **differential equations** which satisfy **Boundary conditions Initial conditions**

One variable: Ordinary differential equation (ODE) Multiple independent variables: Partial differential equation (PDE)

Axially loaded elastic bar

A(x) = cross section at x
b(x) = body force distribution
(force per unit length)
★ X E(x) = Young's modulus
u(x) = displacement of the bar at x

Differential equation governing the response of the bar

$$\frac{d}{dx}\left(AE\frac{du}{dx}\right) + b = 0; \qquad 0 < x < L$$

Second order differential equations Requires 2 boundary conditions for solution

دانشگاه صنمتی اصفهان- دانشکده

Flexible string

S = tensile force in string
p(x) = lateral force distribution
(force per unit length)
w(x) = lateral deflection of the
string in the y-direction

Differential equation governing the response of the bar

$$S \frac{d^2 u}{dx^2} + p = 0;$$
 $0 < x < L$

Second order differential equations Requires 2 boundary conditions for solution

A(x) = cross section at x Q(x) = heat input per unit length perunit time [J/sm]<math>k(x) = thermal conductivity [J/°C ms]T(x) = temperature of the fin at x

Differential equation governing the response of the fin

$$\frac{d}{dx}\left(Ak\frac{dT}{dx}\right) + Q = 0; \qquad 0 < x < L$$

Second order differential equations

Requires 2 boundary conditions for solution

Boundary conditions (examples)

T = 0 at x = 0 Dirichlet/ displacement bc $-k \frac{dT}{dx} = h$ at x = L Neumann/ force bc

دانشگاه صنمتی اصفهان- دانشکده

Fluid flow through a porous medium (e.g., flow of water through a dam)

Differential equation

$$\frac{d}{dx}\left(k\frac{d\varphi}{dx}\right) + Q = 0; \qquad 0 < x < L$$

Second order differential equations Requires 2 boundary conditions for solution دانشگاه صنعتی اصفهان د دانشگوه

A(x) = cross section at x Q(x) = fluid input per unit volumeper unit time k(x) = permeability constant $\varphi(x) = fluid head$

Boundary conditions (examples)

$$\varphi = 0$$
 at $x = 0$ Known head
 $-k \frac{d\varphi}{dx} = h$ at $x = L$ Known velocity

Differential equation	Physical problem	Quantities	Constitutive law
$\frac{\mathrm{d}}{\mathrm{d}x}\left(Ak\frac{\mathrm{d}T}{\mathrm{d}x}\right) + Q = 0$	One-dimensional heat flow	T = temperature A = area k = thermal conductivity Q = heat supply	Fourier q = -k dT/dx q = heat flux
$\frac{\mathrm{d}}{\mathrm{d}x}\left(AE\frac{\mathrm{d}u}{\mathrm{d}x}\right) + b = 0$	Axially loaded elastic bar	u = displacement A = area E = Young's modulus b = axial loading	Hooke $\sigma = E du/dx$ $\sigma = stress$
$S\frac{d^2w}{dx^2} + p = 0$	Transversely loaded flexible string	w = deflection S = string force p = lateral loading	
$\frac{\mathrm{d}}{\mathrm{d}x}\left(AD\frac{\mathrm{d}c}{\mathrm{d}x}\right) + Q = 0$	One-dimensional diffusion	c = iron concentration A = area D = diffusion coefficient Q = ion supply	Fick q = -D dc/dx q = ion flux

Table 4.1 Examples of second-order differential equations

مكانيكر

روش اجزای م 21.6

.

Differential equation	Physical problem	Quantities	Constitutive law
$\frac{\mathrm{d}}{\mathrm{d}x}\left(A\gamma\frac{\mathrm{d}V}{\mathrm{d}x}\right) + Q = 0$	One-dimensional electric current	V = voltage A = area $\gamma = electric conductivity$ Q = electric charge supply	Ohm $q = -\gamma dV/dx$ q = electric charge flux
$\frac{\mathrm{d}}{\mathrm{d}x} \left(A \frac{D^2}{32\mu} \frac{\mathrm{d}p}{\mathrm{d}x} \right) + Q = 0$	Laminar flow in pipe (Poiseuille flow)	p = pressure A = area D = diameter $\mu = viscosity$ Q = fluid supply	$q = -(D^2/32\mu) dp/dx$ q = volume flux q = mean velocity

Table 4.1 Examples of second-order differential equations

Observe:

- 1. All the cases we considered lead to very similar differential equations and boundary conditions.
- 2. In *1D* it is easy to analytically solve these equations
- 3. Not so in 2 and 3D especially when the geometry of the domain is complex: need to solve **approximately**
- 4. We'll learn how to solve these equations in 1D. The approximation techniques easily translate to 2 and 3D, no matter how complex the geometry

A generic problem in 1D

$$\frac{d^{2}u}{dx^{2}} + x = 0; \qquad 0 < x < 1$$
$$u = 0 \quad at \ x = 0$$
$$u = 1 \quad at \quad x = 1$$

Analytical solution

$$u(x) = -\frac{1}{6}x^3 + \frac{7}{6}x$$

Assume that we **<u>do not know</u>** this solution.

<u>دانشگاه صنمتی اصفهان- دانشکده</u>

A generic problem in 1D

A general algorithm for approximate solution:

Guess $u(x) \approx a_0 \varphi_o(x) + a_1 \varphi_1(x) + a_2 \varphi_2(x) + ...$

where $\varphi_0(x)$, $\varphi_1(x)$,... are "known" functions and a_o , a_1 , etc are constants chosen such that the approximate solution

Satisfies the differential equation Satisfies the boundary conditions

i.e.,

$$a_{0} \frac{d^{2} \varphi_{o}(x)}{dx^{2}} + a_{1} \frac{d^{2} \varphi_{1}(x)}{dx^{2}} + a_{2} \frac{d^{2} \varphi_{2}(x)}{dx^{2}} + \dots + x = 0; \qquad 0 < x < 1$$

$$a_{0} \varphi_{o}(0) + a_{1} \varphi_{1}(0) + a_{2} \varphi_{2}(0) + \dots = 0$$

$$a_{0} \varphi_{o}(1) + a_{1} \varphi_{1}(1) + a_{2} \varphi_{2}(1) + \dots = 1$$

Solve for unknowns a_0 , a_1 , etc and plug them back into

$$u(x) \approx a_0 \varphi_o(x) + a_1 \varphi_1(x) + a_2 \varphi_2(x) + \dots$$

This is your **<u>approximate</u> <u>solution</u>** to the strong form

Solution of Continuous Systems – Fundamental Concepts

Exact solutions

limited to simple geometries and boundary & loading conditions

Approximate Solutions

Reduce the continuous-system mathematical model to a discrete idealization

Variational

Rayleigh Ritz Method

Weighted Residual Methods

💠 Galerkin

- Least Square
- Collocation
- Subdomain

Weighted Residual Methods

Weighted Residual Formulations

Consider a general representation of a governing equation on a region V

$$Lu = 0$$

L is a differential operator

eg. For Axial element

$$\frac{d}{dx}\left(EA\frac{du}{dx}\right) - P(x) = 0$$

$$L = \frac{d}{dx} EA \frac{d}{dx} (\) - P(x)$$

Assume approximate solution

U

then
$$Lu = R$$

دانشگاه صنمتی اصفهان- دانشکده

مكانىك

Objective:

Define \mathcal{U} so that weighted average of Error vanishes

Set Error relative to a weighting function w

$$\int_{V} w L(u) \, dV = 0 \quad or \quad \int_{V} w R \, dV = 0$$

دانشگاہ صنمتی اصفھان۔ دانشکدہ

Weighted Residual Methods

روش اجزای محدود

Weighted Residual Formulations

- Start with the integral form of governing equations
- Assume functional form for trial (interpolation, shape) functions
- Minimize errors (residuals) with selected weighting functions

$$w_{j}(x) = \begin{cases} x^{j} & \text{Power series} \\ \sin jx, \cos jx & \text{Fourier series} \\ L_{j}(x) & \text{Lagrange} \\ H_{j}(x) & \text{Hermite} \\ T_{j}(x) & \text{Chebychev} \end{cases}$$

دانشگاه صنعتی اصفهان- دانشکده

Assume certain profile (trial or shape function) between nodes

$$\begin{cases} L(u) = R(x) \neq 0, & \text{but} \\ \int wR \, dx = \int wL(u) \, dx = 0 & \text{Weighted Residual} \end{cases}$$

- In general, we deal with the numerical integration of trial or interpolation functions
- Trial functions:

constant, linear, quadratic, sinusoidal, Chebychev polynomial,

Weighting functions:

subdomain, collocation, least square, Galerkin,

$$\int_{V} w(x, y, z) R(x, y, z) dx dy dz = \int_{V} w L(u) dv = 0$$

General Formulation

- Weighted Residual Methods (WRMs)
- Construct an approximate solution

$$u(x, y, z) = u_o(x, y, z) + \sum_{j=1}^{J} a_j \phi_j(x, y, z)$$

Chosen to satisfy I.C./B.C.s if possible

- Steady problems system of algebraic equations for trial function $\phi_j(x, y, z)$
- Transient problems system of ODEs in time

Consider one-dimensional diffusion equation

$$\begin{aligned} L(\overline{u}) &= 0 & \text{Exact solution} \\ L(u) &= R(x) \neq 0 & \text{Approximation} \end{aligned}$$

In general, $R \rightarrow 0$ with increasing J (higher-order)

 $\iiint W_m(x, y, z) R(x, y, z) dx dy dz = 0, \quad m = 1, 2, \cdots, M$

Weak form – integral form, discontinuity allowed (discontinuous function and/or slope)

Weighted Residual Methods

Weak form – integral formulation

Differential Form:

Exact Integral Form:

Discretization :

$$L(\overline{u}) = 0$$

$$\iiint w(x, y, z)L(\overline{u})dxdydz = 0$$

$$\iiint w_m(x, y, z)L(u)dxdydz = 0$$

R ≠ 0, but "weighted *R*" = 0
Choices of shape or interpolation functions?
Choices of weighting functions?

 D_m may be overlapped

Collocation Method

No control on the residuals between nodes

Least Square Method

$$\iiint w_m(x, y, z) L(u) dx dy dz = 0 \quad ; \quad L(u) = R \neq 0$$

Minimize the square error

$$\frac{\partial}{\partial a_m} \int_V R^2(x, y, z, a_m) dx dy dz = 0 \Longrightarrow \int_V \frac{\partial R}{\partial a_m} R dx dy dz = 0$$

$$w_m(\vec{x}) = \frac{\partial R}{\partial a_m}$$
 Square error
R² \neq 0

$$\iiint w_m(\vec{x})R(\vec{x})d\vec{x} = \frac{1}{2}\frac{\partial}{\partial a_m} \iiint R^2 d\vec{x} = 0 \qquad R^2 \ge 0$$

Galerkin Method

$$\iiint w_m(x, y, z)L(u)dxdydz = 0 \quad ; \quad L(u) = R \neq 0$$

Weighting function = trial (interpolation) function

$$w_m(\vec{x}) = \phi_m(\vec{x})$$
$$\iiint w_m(\vec{x})R(\vec{x})d\vec{x} = \iiint \phi_m(\vec{x})R(\vec{x})d\vec{x}$$

For orthogonal polynomials, the residual *R* is orthogonal to every member of a complete set!

Numerical Accuracy

- How do we determine the most accurate method?
- How should the error be "weighted"?
- Zero average error?
- Least square error?
- Least rms error?
- Minimum error within selected domain?
- Minimum (zero) error at selected points?
- Minimax minimize the maximum error?
- Some functions have fairly uniform error distributions comparing to the others

Application to an ODE

Consider a simple ODE (Initial value problem)

$$\frac{d\overline{y}}{dx} - \overline{y} = 0 , \quad 0 \le x \le 1 \Rightarrow \overline{y} = e^x \overline{y}(0) = 1$$

Use global method with only one elementSelect a trial function of the form of

$$y = l + \sum_{j=l}^{N} a_j x^j$$

Automatically satisfy the auxiliary condition
 a_j = constant, not a function of time

Application to an ODE

Consider a cubic interpolation function with N = 3

$$y = 1 + \sum_{j=1}^{N} a_j x^j = 1 + a_1 x + a_2 x^2 + a_3 x^3$$

- QUESTION: Which cubic polynomial gives the best fit to the exact (exponential function) solution?
- Definition of best fit?
- Zero average error, least square, least rms, ...?

Residual

Substitute the trial function into governing equation

$$R = L(y) = \frac{dy}{dx} - y = \sum_{j=1}^{N} ja_j x^{j-1} - \left(1 + \sum_{j=1}^{N} a_j x^j\right) = -1 + \sum_{j=1}^{N} a_j x^{j-1} (j-x)$$

For cubic interpolation function N = 3

$$R(x) = -1 + a_1(1 - x) + a_2(2x - x^2) + a_3(3x^2 - x^3)$$

= $(a_1 - 1) + (2a_2 - a_1)x + (3a_3 - a_2)x^2 - a_3x^3 \neq 0$

The residual is a cubic polynomial $\Rightarrow R \neq 0$

Determine the optimal values of a_j to minimize the error (under pre-selected weighting functions)

Subdomain Method

Zero average error in each subdomain

<u>Note</u>: $R(0) = 0.0156 \neq 0$, $R(1) = -0.0155 \neq 0$

دانشگاه صنمتی اصفهان- دانشکده

Subdomain Method

مكانيك

روش اجزای محدود

Subdomain Method

Nonuniform subdomains?

دانشگاه صنمتی اصفهان- دانشکده

Least Square Method

Minimum square errors over the entire domain

$$\begin{aligned} R(x) &= -1 + \sum_{m=1}^{N} a_m (mx^{m-1} - x^m) \qquad \Rightarrow \frac{\partial R}{\partial a_m} = mx^{m-1} - x^m \\ \int_0^1 w_m R dx &= \int_0^1 \frac{\partial R(x)}{\partial a_m} R(x) dx = 0 \\ &= -\int_0^1 (mx^{m-1} - x^m) dx + \sum_{j=1}^{N} a_j \int_0^1 \left[mj \ x^{m+j-2} - (j+m)x^{m+j-1} + x^{m+j} \right] dx \end{aligned}$$

For arbitrary N (symmetric matrix)

$$\sum_{j=l}^{N} a_{j} \left(\frac{mj}{m+j-l} - 1 + \frac{1}{m+j+l} \right) = 1 - \frac{1}{m+l} = \frac{m}{m+l}$$

دانشگاه صنمتی اصفهان- دانشکده

Least Square Method

For cubic interpolation function (N=3)

$$R = (a_{1} - 1) + (2a_{2} - a_{1})x + (3a_{3} - a_{2})x^{2} - a_{3}x^{3}$$

$$\begin{cases} m = 1, \quad w_{1} = \frac{\partial R}{\partial a_{1}} = 1 - x \qquad \Rightarrow \int_{0}^{1} (1 - x)Rdx = 0 \\ m = 2, \quad w_{2} = \frac{\partial R}{\partial a_{2}} = 2x - x^{2} \qquad \Rightarrow \int_{0}^{1} (2x - x^{2})Rdx = 0 \\ m = 3, \quad w_{3} = \frac{\partial R}{\partial a_{3}} = 3x^{2} - x^{3} \qquad \Rightarrow \int_{0}^{1} (3x^{2} - x^{3})Rdx = 0 \end{cases}$$

Nonuniform weighting of residuals over the domain

Least Square Method

Cubic trial function

$$\sum_{j=l}^{3} a_{j} \left(\frac{mj}{m+j-l} - \frac{m+j}{m+j+l} \right) = \frac{m}{m+l}$$

$$\begin{pmatrix} m = 1, & \frac{1}{3}a_{1} + \frac{1}{4}a_{2} + \frac{1}{5}a_{3} = \frac{1}{2} \\ m = 2, & \frac{1}{4}a_{1} + \frac{8}{15}a_{2} + \frac{2}{3}a_{3} = \frac{2}{3} \Rightarrow \quad \vec{a}_{i} = \begin{bmatrix} 1.0131 \\ 0.4255 \\ 0.2797 \end{bmatrix}$$

$$m = 3, \quad \frac{1}{5}a_{1} + \frac{2}{3}a_{2} + \frac{33}{35}a_{3} = \frac{3}{4}$$

R(0) = $0.0131 \neq 0$, R(1) = $-0.0151 \neq 0$

وانشگاه صنمتی اصفهان۔ وانشکوه

Least Square Method

روش اجزای محدود

• Weighting function = Trial function

$$\begin{cases} \phi_m(x) = x^0, x^1, x^2, x^3, \dots, x^{N-1} \\ w_m(x) = \phi_m(x) = x^{m-1} \\ R(x) = -1 + \sum_{m=1}^N a_m(mx^{m-1} - x^m) \end{cases}$$

$$\int_0^1 w_m R dx = \int_0^1 x^{m-1} R(x) dx = 0 = -\int_0^1 x^{m-1} dx + \sum_{j=1}^N a_j \int_0^1 \left(j x^{m+j-2} - x^{m+j-1} \right) dx$$

$$\sum_{j=1}^{N} \left(\frac{j}{j+m-1} - \frac{1}{j+m} \right) \quad a_j = \frac{1}{m}$$
$$\sum_{j=1}^{N} S_{mj} a_j = d_m \quad \Leftrightarrow \quad \overline{S} \overrightarrow{A} = \overrightarrow{D}$$

دانشگاه صنمتی اصفهان- دانشکده

مكانىك

For cubic interpolation function (N=3)

$$R = (a_{1} - 1) + (2a_{2} - a_{1})x + (3a_{3} - a_{2})x^{2} - a_{3}x^{3}$$

$$\begin{cases} m = 1, \quad W_{1} = x^{0} = 1 \qquad \Rightarrow \int_{0}^{1} Rdx = 0 \\ m = 2, \quad W_{2} = x^{1} = x \qquad \Rightarrow \int_{0}^{1} xRdx = 0 \\ m = 3, \quad W_{3} = x^{2} \qquad \Rightarrow \int_{0}^{1} x^{2}Rdx = 0 \end{cases}$$

Small weighting of residuals near x = 0
Largest weight for residuals near x = 1

Cubic trial function

$$\sum_{j=1}^{3} a_{j} \left(\frac{j}{m+j-1} - \frac{1}{m+j} \right) = \frac{1}{m}$$

$$\begin{cases} m = 1, \quad \frac{1}{2}a_1 + \frac{2}{3}a_2 + \frac{3}{4}a_3 = 1 \\ m = 2, \quad \frac{1}{6}a_1 + \frac{5}{12}a_2 + \frac{11}{20}a_3 = \frac{1}{2} \implies \vec{a}_i = \begin{bmatrix} 1.0141 \\ 0.4225 \\ 0.2817 \end{bmatrix} \\ m = 3, \quad \frac{1}{12}a_1 + \frac{3}{10}a_2 + \frac{13}{30}a_3 = \frac{1}{3} \end{cases}$$

$$\begin{cases} y(x) = 1 + 1.0141x + 0.4225x^2 - 0.2817x^3 \\ R(x) = 0.0141 - 0.1691x + 0.4226x^2 - 0.2817x^3 \end{cases}$$

R(0) = 0.0141 \neq 0, R(1) = -0.0141 \neq 0

مكانيكر

Order of approximation:

Linear, Quadratic, and Cubic Trial functions

دانشگا<mark>n صنمتی اصفهان</mark>- دانشکدn

x	Approximate solu	Exact solution,		
	Linear $(N=1)$	Quadratic $(N=2)$	Cubic $(N=3)$	$\bar{y} = \exp(x)$
0.	1.0	1.0	1.0	1.0
0.2	1.4	1.2057	1.2220	1.2214
0.4	1.8	1.4800	1.4913	1.4918
0.6	2.2	1.8229	1.8214	1.8221
0.8	2.6	2.2349	2.2259	2.2251
1.0	3.0	2.7143	2.7183	2.7183
Solution				
err. (rms)	0.2857	0.00886	0.00046	Section 1
R _{rms}	0.5271	0.0583	0.00486	ho. <u>—</u> Bijetter

Table 5.1. Galerkin solutions of dy/dx - y = 0

دانشگام صنمتی اصفهان- دانشکده

Alternative choice of weighting functions

$$R = (a_1 - 1) + (2a_2 - a_1)x + (3a_3 - a_2)x^2 - a_3x^3$$

= $-1 + (1 - x)a_1 + (2x - x^2)a_2 + (3x^2 - x^3)a_3 = -1 + \sum_{j=1}^3 a_j\phi_j$

$$\begin{cases} m = 1, \ W_1 = 1 - x \qquad \Rightarrow \int_0^1 (1 - x) R dx = 0 \\ m = 2, \ W_2 = 2x - x^2 \qquad \Rightarrow \int_0^1 (2x - x^2) R dx = 0 \\ m = 3, \ W_3 = 3x^2 - x^3 \qquad \Rightarrow \int_0^1 (3x^2 - x^3) R dx = 0 \end{cases}$$

More uniform weighting functionsIdentical to the least square method

Collocation Method

R = L(u) = 0 at collocation points

$$y(x) = 1 + x + \frac{3}{7}x^2 + \frac{2}{7}x^3 \Rightarrow y(1) = 2\frac{5}{7} \neq e = 2.71828\cdots$$

Identical to Galerkin method if the residuals are evaluated at x = 0.1127, 0.5, 0.8873

دانشگاه صنمتی اصفهان- دانشکده

Collocation Method

Taylor-series Expansion

Truncated Taylor-series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} \implies \vec{a}_{i} = \begin{bmatrix} 1 \\ 1/2 \\ 1/6 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.5 \\ 0.1667 \end{bmatrix}$$

R(0) = 0, R(1) = -1/6 = -0.1667 ≠ 0
Poor approximation at x = 1
Power series has highly nonuniform error distribution

52

Interpolation Functions

Table 5.2. Comparison of coefficients for approximate solutions of dy/dx - y = 0

	Coefficient			
Scheme		<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃
Galerkin		1.0141	0.4225	0.2817
Least squares		1.0131	0.4255	0.2797
Subdomain		1.0156	0.4219	0.2813
Collocation		1.0000	0.4286	0.2857
Optimal rms		1.0138	0.4264	0.2781
Taylor series		1.0000	0.5000	0.1667

Numerical Accuracy

Table 5.3. Comparison of approximate solutions of dy/dx - y = 0

x	Galerkin	Least squares	Sub- domain	Collo- cation	Optimal rms	Taylor series	Exact
0.	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.2	1.2220	1.2219	1.2213	1.2194	1.2220	1.2213	1.2214
0.4	1.4913	1.4912	1.4917	1.4869	1.4915	1.4907	1.4918
0.6	1.8214	1.8214	1.8220	1.8160	1.8219	1.8160	1.8221
0.8	2.2259	2.2260	2.2265	2.2206	2.2263	2.2053	2.2255
1.0	2.7183	2.7183	2.7187	2.7143	2.7183	2.6667	2.7183
Solution error (rms)	0.000458	0.000474	0.000576	0.004188	0.000434	0.022766	

Interpolation Functions

Comparison of numerical errors for weighted residual methods

